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ABSTRACT 

The wave transmission characteristics of blood vessels serve as 

measures of their mechanical properties including the elas tic and viscoelastic 

behavior of the vessel walls. To aid in the proper assessment of these 

characteristics, various theoretical and experimental aspects of dispersion 

and attenuation of waves propagating in blood vessels a r e  investigated, In 

order to determine the individual effects of a mean blood flow and anisotropy 

of the vessel wall on the speed and mode shapes of waves in blood vessels, 

the theoretical study of Anliker and Maxwell is extended. The vessel is taken 

as perfectly elastic and the fluid inviscid and incompressible. Motions of the 

wall are considered small and the linearized equations of FlGgge for pre- 

stressed, thin walled, circular cylindrical shells are  used to describe the 

equilibrium of the blood vessel. Under these conditions three distinct types 

of waves (I, I1 and 111) are  possible which at high frequencies a re  associated 

essentially with radial, circumferential or axial motions of the vessel 

respectively. In addition, we consider both axisymmetric and nonaxisym- 

metric wall displacements. 

In the presence of a mean flow the speed of axisymmetric pressure 

waves (type I) in the larger vessels is given approximately by the wave speed 

at zero mean flow plus the average stream velocity in the direction of the 

propagating wave for signals with frequencies less than about 100 Hz. For 

nonaxisymmetric type I waves the increase in signal speed is generally about 

half the mean flow velocity. The propagation characteristics of torsion and 
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axial waves (I1 and 111) are not significantly affected by the addition of a net flow, 

It appears that the proper interpretation of experimental data regarding the 

transmission of pressure waves requires information describing the blood flow 

during the time the data were obtained. 

Effects of anisotropy of the vessel wall are studied by considering the 

vessel as an orthotropic elastic shell with different Young's moduli and Poisson's 

ratios in the axial and circumferential directions. The results of a parametric 

analysis show that the dimensionless phase velocity and mode shapes of non- 

axisymmetric waves of all three types are not strongly influenced by variations in  

anisotropy except near the cut-off frequencies. On the other hand, dispersion of 

each type of axisymmetric wave is affected by anisotropy. For instance, the 

speed of pressure waves depends primarily on the value of the circumferential 

Young's modulus, torsion waves on the shear modulus and the velocity of axial 

waves on the value of the longitudinal Young' s modulus. 

Experimentally, the mechanical behavior of the abdominal venae cavae of 

anesthetized dogs has been studied by measuring the speed, attenuation and 

changes in wave form of various types of induced pressure signals. The speed 

of large amplitude pressure waves normally ranged from about 100 to 700 cm/sec 

and was found to depend strongly on the signal amplitude, transmural pressure 

and physiological state of the animal. The propagation of these signals is shown 

to be affected by reflection interference and pronounced nonlinear phenomena. 

For pressure signals exceeding a few mm Hg the speed increases with amplitude 

and the wave front steepens during propagation as in the early phases of the 
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formation of a shock wave. By inducing distension waves in the form of finite 

trains of sine waves with amplitudes less than 20 mm H 0 the dispersion and 

attenuation were determined without requiring Fourier transform computations. 

These small amplitude waves traveled with phase velocities between 100 and 400 

cm/sec and exhibited only mild dispersion for frequencies from 20 to 100 Hz. 

Attenuation of these signals is attributed primarily to viscoelastic damping in the 

vessel wall and appears to follow an exponential decay pattern which is independent 

of frequency. The logarithmic decrement ranged from about 1 to 2 . 5  for the 

vena cava. Irrespective of the amplitude and shape of the pressure signals, 

their speeds varied along the vena cava and also with respiration. In addition 

the speeds generally increased with rising transmural pressure and a linear 

relationship between these two quantities was apparent. When the transmural 

pressure was increased by occluding the vena cava the phase velocity varied at a 

rate from 1.5 to 2.5 cm/sec/mm €1~0. 
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NOMENCLATURE 

a 

A = wave amplitude 

A 

= equilibrium radius of the middle surface of the vessel wall 

= wave amplitude at origin 
0 

Asc I 
Bsc } = mode amplitudes for circumferential wave number s, phase 

C 
velocity c (isotropic shell) 

s c  

sc 1 A 

N 

Bsc 1 = mode amplitudes for circumferential wave number s, phase 
N velocity c (orthotropic shell) 

C = axial phase velocity 

2 1/2 
C 

C 

C* 

C = c/c* dimensionless phase velocity (orthotropic shell) 

= [E/pw(l - v )] 

= c/cp = dimensionless phase velocity (isotropic shell) 

= [Ex/pw(l - v v )]1/2 = normalizing phase velocity (orthotropic shell) 

= normalizing phase velocity (isotropic shell) 
P 
- 

P X P  
N 

P 
N 

= dimensionless axial phase velocity of type I, I1 and 111 waves, 
respectively I1 C 

= constant related to initial conditions of fluid 
sc 

D 

2 2  = h /12a = dimensionless parameter 2 
e 



+ 
e = unit vector in axial direction 

E = Young' s modulus of vessel wall (isotropic shell) 

E 

E 

X 

= Young' s modulus of vessel wall in axial direction (orthotropic shell) 

= Young's modulus of vessel wall in circumferential direction 

X 

P (orthotropic shell) 

G = elastic shear modulus 

g 

h = thickness of vessel wall 

N = G(l  - v v )/E = dimensionless elastic shear modulus (orthotropic 
shell) 

i = 4-1 
Is(s) = modified Bessel function of the first kind, argument 

k = logarithmic decrement 

L.. = differential operators (isotropic shell) 

L.. = differential operators (orthotropic shell) 

m 

n = unit normal vector of vessel wa l l  

'e 

4 

1J 

f 

N 

= radial apparent mass of fluid contained in vessel 

+ 

= external pressure applied to vessel 

= perturbed internal pressure applied to vessel 
pi 

= unperturbed internal pressure 

= transmural venous pressure 

= Tlo(l - v )/Eh = dimensionless axial stress resultant (isotropic shell) 

= T (1 - v v )/E h = dimensionless axial stress resultant 

= aAp(l - v )/Eh = dimensionless stress resultant (isotropic shell) 

= aAp(1 - v v )/E h = dimensionless circumferential stress resultant 
(ortho tr o a f  she&) 

r = coordinate in radial direction 

S = circumferential wave number 

'io 

pV 

91 
2 

N 

q1 (h?hotro@shefl) 
2 
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q2 
N 

X 



t = time 

= initial axial tension of vessel T1O 

U 

= displacements of middle surface of vessel wall in axial, circumferential 
and radial directions, respectively 

W 

U = velocity of mean flow in axial direction 

U 

V = perturbation fluid velocity 

V = perturbation fluid velocity in axial direction 

V = total fluid velocity 

X = coordinate in axial direction 

o! = x/a dimensionless axial coordinate 

P = coordinate in circumferential direction 

= Y = Y for initially unstressed vessel Y 

= E /E = ratio of Young' s moduli in circumferential and axial 

= v /v = ratio of Poisson' s constants in circumferential and axial 

- 
= U/cp = dimensionless velocity of mean flow in axial direction 

.-c 

X 
-c 

1 2  

diiections 

dpr e&ons 

Y1 

Y2 

Y = shear strain 

fQ - pio - pe = transmural pressure 

Ax = distance between pressure transducers 

E = strain in axial direction 

XP 

- 

X 

= strain in circumferential direction 
P E 

h = wavelength of disturbance 
= (1 - v 2 2  )a mf/Eh = fluid inertia parameter (isotropic shell) 

IJ.f 

2 = (1 - v v )a n /E h = fluid inertia parameter (orthotropic shell) x p  f x 

2 2  
= (1 - Y )a (pwh)/Eh = wall inertia parameter (isotropic shell) 

pW 

xi 



N 

V 

V 
X 

v 
P 

5 

pf 

pW 
- 
P 

N 

P 

a 
X 

P 
a 

I- 
XP 

N 

0 

V 

02 

2 
= (1 - v v )a (p h)/E h = wall inertia parameter (orthotropic shell) 

= Poisson' s ratio (isotropic shell) 

= Poisson' s ratio for axial direction (orthotropic shell) 

x p  w x 

= Poisson' s ratio for circumferential direction (orthotropic shell) 

= oa/c = dimensionless parameter 

= density of fluid 

= density of vessel wall 

= P f h W  = dimensionless density ratio (isotropic shell) 

= Pf/Pw = dimensionless density ratio (orthotropic shell) 

= stress in axial direction 

= stress in circumferential direction 

= shear stress 

= fluid velocity potential 

= circular frequency 

= oa/c = dimensionless circular frequency (isotropic shell) 

= wa/c* = dimensionless circular frequency (orthotropic shell) 

= gradient operator 

= Laplacian operator 

P 

P 

xii 



GENERAL INTRODUCTION 

Methods for determining the mechanical properties of arteries and veins 

and their relationship to blood flow under normal and pathological conditions 

have been subject to intensive study for many years. Recent books and review 

ar t i~ les l -~)  trace historically many of the experimental and analytical advances 

in hemodynamics and contain extensive bibliographies. In addition, these 

publications detail much of the current knowledge in the field of cardiovascular 

dynamics gained from both the physical and biological sciences. A significant 

research effort has been directed toward evaluating the elastic and viscoelastic 

properties of blood vessels from their wave transmission characteristics and 

it is the purpose of this paper to provide additional information for elucidating 

this relationship. 

8, '3 lo) and The work presented here is part of a systematic theoretical 

investigation of the wave transmission characteristics 11,12,13) experimental 

of blood vessels aimed at the development of a noninvasive, nontraumatic method 

for measuring the elastic properties of arteries and veins. Such a technique 

would have applications with respect to space flight. Not only could it provide 

essentially continuous measurements of the distensibility of individual blood 

vessels of astronauts, but one would also be able to detect possible deconditioning 

of the cardiovascular system resulting from prolonged exposure to weightlessness. 

Clinically, the propagation characteristics of various arteries and veins could 

be measured routinely as an index of aging and could perhaps allow for the 
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early diagnosis of the onset of atherosclerosis. 

I 

Two distinct investigations a re  described in this paper. The first section 

is an attempt to extend the theory of Anliker and Maxwell') for the dispersion of 

waves in blood vessels to include somewhat more general conditions. In Chapter 

I the effects of a mean flow on the wave transmission characteristics of blood 

vessels a re  studied while nonisotropic behavior of the vessel wall is considered 

in Chapter 11. In both analyses the vessel is taken as perfectly elastic and the 

fluid incompressible and inviscid and the effects of the medium surrounding the 

vessel are  neglected. With these assumptions the system is rendered free of all 

energy dissipation mechanisms. The theory is applicable to wave propagation in 

arteries and veins and the value of the vessel wall thickness to radius ratio used 

for computational purposes, although typical for large arteries, was chosen 

primarily to facilitate comparison with the results of Reference 8. 

The second section deals with some experimental aspects of wave propaga- 

tion in blood vessels and is presented in Chapters I11 and IV. Studies were 

devoted exclusively to the transmission of large and small pressure waves in the 

abdominal vena cava of anesthetized dogs and the results described represent an 

effort of more than three years duration. In addition to measuring the dispersion 

and attenuation of sinusoidal pressure waves, the effect of variations in transmural 

pressure on the signal velocities was determined. These experimental findings 

are intended to supplement similar investigations of the transmission character- 

istics of arteries"' 12) and serve as a basis for current and future studies of 

control mechanisms of the circulatory system. 
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I. THEORETICAL STUDY OF THE EFFECT OF MEAN FLOW ON THE 
DISPERSION AND ATTENUATION OF WAVES IN BLOOD VESSELS 

Introduction 

The wave transmission characteristics of a blood vessel may depend to 

some degree upon the unperturbed flow existing in the vessel. The extent to 

which the theoretically computed wave speed of a small disturbance is affected, 

however, may be influenced not only by the characteristics of the flow but also 

by the mathematical model chosen to describe the mechanical behavior of the 

vessel. The derivation of the classical Moens-Korteweg equation, for example, 

neglects the inertia of the vessel wall and the viscosity of the fluid and requires 

only a transformation to a coordinate system moving with the fluid in order to 

account for a mean flow velocity. This results in a simple superposition of the 

wave speed for the system at rest (no mean flow) with the velocity of the 

streaming fluid. 

The effect of a mean flow of a viscous fluid on wave propagation in a 

cylindrical tube was investigated theoretically by Morgan and Ferrante14). In 

their analysis, the blood vessel was approximated by a fluid filled circular 

cylindrical elastic membrane and the results show that the speed of pressure 

waves propagating in the direction of the flow increases with increasing flow by 

an amount slightly greater than the average stream velocity. For an inviscid 

fluid these authors found the increase in wave speed to be somewhat less than the 

mean flow velocity. 

These results indicate that a serious misinterpretation of wave speed 
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measurements can occur when the effects of a mean flow are  neglected irre- 

spective of the flow velocity. In the analysis presented here, the blood vessel 

is described by a theoretical model which includes the effects of initial axial 

stretch and transmural pressure and bending rigidity of the vessel wall. On 

the other hand, however, we assume that the blood behaves like an incompressible 

inviscid fluid since only at  low frequencies does viscosity significantly influence 

the dispersion15' 16' 17) o r  attenuation") of waves in blood vessels and the 

transmission of all but the highest frequency signals does not seem to be affected 

8) by the compressibility of the blood . It is felt that with these features the model 

represents a more realistic approximation to the actual behavior exhibited by 

blood vessels and in view of the findings of Morgan and Ferrante14) the extent 

to which a mean blood flow influences the velocity and mode shape of propagating 

waves should be determined. The following analysis, it should be mentioned, 

is not restricted to the transmission of only axisymmetric waves but also includes 

those waves associated with nonaxisymmetric displacements of the vessel wall. 

Basic Equations 

We refer the middle surface of the vessel wall to a set of cylindrical 

coordinates x, p, r. 

the displacements u, v, w of an arbitrary point of the middle surface in the axial, 

The signals associated with a disturbance are  defined by 

circumferential and radial directions respectively. For a given pressure dif- 

ference and initial axial tension the equilibrium configuration of the middle 

surface (u, v, w = 0) is a circular cylinder defined by r = a. 

The fluid is assumed to be incompressible and inviscid and its velocity 
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is given by 

+ + - c  
v = v + u  

where v' is the perturbation velocity associated with the disturbance and 5 
is the velocity of the streaming flow. In addition, v' is taken to be irrotational 

and the effects of gravity are ignored. This enables us to represent the perturba- 

tion velocity as the gradient of a scalar potential function @ 

In general, variations in blood flow velocity a re  periodic and occur with 

each cardiac and respiratory cycle '' 18), Since the length of time during which 

we observe the induced propagating disturbance is short compared to the heart 

and respiratory rates, the mean flow U is taken as constant in magnitude 
v 

+ ( I  U 1 = U = constant). Furthermore we will assume that the flow is directed 

entirely along the longitudinal axis of the vessel. 

For an incompressible fluid the continuity equation may be written 

+ - c  + 
V . V = V * ( V + u ) = O  

+ 
hence for constant U 

i. e. the velocity potential @ satisfies Laplace's equation. In the absence of 

body forces, Euler' s equation for an inviscid fluid takes the form 

1 3 av -r - + v *  v v = - - v p i  at pf 

where pi denotes the perturbed intraluminal pressure and p the fluid density. f 

Making use of the vector identity 
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-+ + 1  + +  + v v v = p ( v *  V) - V X ( V  XV), 

the condition of irrotationality 

V X ? = O  
+ 

and the fact that U = U z  we can rewrite Euler' s equation as 
X 

av'  1 

pf a t  - + V(VxU) = - -vpi 

+ - - c  2 where vx = v e and v << 3. Substituting the velocity potential in (1.8) 

yields 

X 

aia aia 'i +u---) = o  'at ax pf 

which becomes upon integration 

aia aia 
q = p ( - + U - )  f at ax +'io (1.10) 

where the integration constant p. denotes the undisturbed intraluminal pressure. 
10 

The fluid and wall velocities are  related through the kinematic boundary 

condition which requires that the fluid velocity in the direction of the normal to 

the wall be equal to the wall velocity in the same direction, hence 

+ - b  -+ v n = (G,t,iv) n (1.11) 

where n" is the outward directed unit normal vector of the wall. Linearizing 

this condition and applying it at the middle surface r = a we obtain 

aw - ujg. aw aia 
- - (&, at  

-- 
r = a  

6 
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We consider solutions to the continuity equation (1.4) in the form of 

undamped, propagating sinusoidal waves 

Q! = D I (sT)exp[i3x - ct) +isp] (1.13) sc sc s a 

oa with 5 = -. D is the amplitude corresponding to an initial set of conditions, 

s the circumferential wave number, w the circular frequency of the sine wave, 

c its wave velocity and Is the modified Bessel function of the first kind of 

order s. 

C sc 

For this analysis we assume that the vessel behaves like an isotropically 

elastic, thin walled, circular cylindrical shell of thickness h. A s  material 

constants we use the Young? s modulus E and Poisson? s ratio v .  An initial 

axial stretch of the vessel produces an axial tension in the vessel wall denoted 

here by TIQ. 

The transmural pressure Ap is given by 

AP = Pio - Pe (1.14) 

where pe is the external pressure and is assumed to remain constant. We 

introduce as dimensionless stress resultants in the axial and circumferential 

directions respectively 

2 aAp(1 - v ) 
Eh q2 = 

and define a dimensionless axial coordinate 

7 

(1.15) 

(1.16) 



X 
01 = -. (1.17) a 

We now make use of the linearized equations for circular cylindrical shells 

derived by W. FlGgge”). These differential equations a re  valid for small 

displacements u, v, w of the middle surface of the vessel wall about the equilibrium 

configuration u = v = w = 0 and take the form: 

2 a u  - P w T  - 0  - 
a t  

2 a v aw a v  
L ( u ) + L  ( v ) + L  (w)+(q +vq )-+q (-+ j 1 2 2  2 2 a p  

aa a p  

2 

21 22 23 

(1.18) 
2 

- - 0  
a v  “2 - 

2 a w  

The linear differential operators L.. are given by 
11 
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2 2 L22 = - a2 ~ - 1 + 3 e )  v a  

ap2 + 2 a , !  

= l + e  2 (V 2 2  V + 2 2 + 1 )  a2 
ap L33 

2 ji + V I  a 
2 aaap L12 = L21 = 

3 
1 

a 2 a3 (1 - q  a 
2 h a p 2  

L13 - - L31 = v z  - e r 3 -  
a,! 

where we have used the abbreviations 

2 h2 

12a 
e = -  

2 

2 a2 a2 v =- 
a,!2 +2' 

(1.19) 

(1.20) 

(1.21) 

and IJ. represent inertia quantities associated with the vessel wall and fluid: 
IJ.W f 

2 1 - v  2 
f m 'f= Eh a 

(1.22) 

(1.23) 
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where m the apparent mass of the fluid, is defined by f '  

0 

a% -m - - - (Pi - Pio)' 
fat2 r = a  

Making use of the Euler equation in the form of ( 1 , l O )  we obtain 

We assume solutions to (1.18) of the form 

w 
sc C 

u = A exp[i -(x - ct) +is@] 

0 
v = B exp[i --(x - ct) + i sp ]  s c  

(1.24) 

(1.25) 

(1.26) 

w Tr 
w = C exp[i -(x - ct) +is@ + i 51 sc C 

i. e. a disturbance propagating in the positive x-direction with velocity c. 

Combining (1.12), (1.13), (1.25) and (1.26) we find for the apparent mass 

(1.27) 

where 

Substitution of equations (1.26) into (1.18) leads to a set of three linear 

homogeneous equations for the amplitude factors A 

contain o as a free parameter. The requirement of the existence of a 

B and Csc which 
SC) s c  

1 0  



nontrivial solution for the three coefficients results in a frequency equation 

which can be characterized by a vanishing determinant. 

For purposes of comparison with Reference 8 it is convenient to introduce 

the following additional dimensionless parameters: 

2 E 
P 2 c =  

Pw(l  - v 1 

- pf 

pW 

p = -  

2 

2 
P 

-2 c c =- 

C 

2 2  
-2 w a  

2 
P 

w =- 
C 

g = - .  v2 
2 
P 

C 

- 
w 
C 

Then f == and the frequency equation can be written as: 

(1.28) 

l + v  w 
2 *z - 

3 1;; 2 0  1 - v w 2  
C -3 2 z s )  

I 
I =(v - q2) + e  (-- -- 

C 

I 
1 

I-------- t--------- ------ I 
= o .  

(1.29) 



Results 

We note that for the case f5 = 0.0 equation (1.29) reduces to the frequency 

equation given in 'Reference 8 whereas the existence of a mean velocity introduces 

additional terms in the equilibrium equation for the radial direction. This fre- 

quency equation contains nine dimensianless parameters q ,q ,v, s,h/a,W, c, p 

and 5. Young's modulus E, the density of the vessel wall pw, the radius of 

the middle surface a and the mean flow velocity U do not appear explicitly in 

the equation but enter as scale factors in the parameters w, c and 5. With the 

aid of an IBM 7094 digital computer, the dimensionless wave speed c has been 

calculated as a function of the eight remaining dimensionless parameters. For 

each circumferential wave number s there exist three distinct types of waves 

each having a characteristic propagation velocity and wall displacement pattern. 

These waves shall be denoted as type I, I1 and 111. At  high frequencies type I 

waves are  characterized by predominantly radial displacements of the vessel wall, 

type 11 by circumferential and type I11 by axial displacements. The influence of 

a mean blood flow on the dispersion and mode shapes of these waves is illustrated 

in Figures 1 through 10. In these graphs the dimensionless phase velocity E 

and the normalized displacement amplitudes IuI, Ivl , Iwl are given as functions 

of dimensionless frequency w for s = 0 , 1 , 2 , 3  and for zero transmural pressure 

and axial stretch (ql = q = 0.0). The value of h/a (wall thickness to radius 

ratio) corresponds to that of a large artery. 

- - -  
1 2  

- -  

2 

The effects of transmural pressure, axial tethering and thickness to 

radius ratio as well as Poisson's ratio and the density ratio on the wave speed 

12 



have been discussed extensively by Anliker and Maxwell 8) . We will therefore 

direct our attention only to the influence of the mean flow velocity on the wave 

speeds. 

It should be noted that since 5 and are  both normalized by the factor 

c 

dimensional and dimensionless variables. We can attribute physical significance 

to the dimensionless mean flow velocity by considering values for the parameters 

E, Pw and v usually ascribed to the circulatory system. A value of is = 0.1, for 

example, corresponds to an actual mean flow velocity of about 115 cm/sec if 

the relative effects of a mean flow on the phase velocity a re  the same for 
P’ 

3 
= 1.0 gm/cm and v = 0.5. 6 2 

’ pw E = 10 dynes/cm 

Discussion of Type I Waves 

The effects of a mean flow on the mode shapes and phase velocities of type I 

waves a re  shown in Figures 1 through 6. In general the speed of signals traveling 

in the direction of the flow increases with increasing flow velocity for all values 

of the circumferential wave number s, and the frequency dependence of the wave 

speed remains relatively unaffected. For axisymmetric disturbances (s = 0) 

Figure 1 shows that the wave speed in the presence of a mean flow is increased by 

an amount approximately equal to the velocity of the flow for small values of z. 

This difference in signal speed progressively decreases with increasing frequency 

and is less than half the flow velocity for W > 1.0. The corresponding changes 

in mode shape a re  given in Figure 2. Notice that for w < 1.0 the relative amplitude 

of the radial displacement decreases with flow while the axial displacement shows 

an increase for a given frequency. The increase in wave speed and the decrease 

in radial displacement may be attributed to an apparent stiffening of the vessel 
13 



with respect to distension as a result of the increase in inertia or apparent mass 

of the fluid in the radial direction. 

Considering waves with s = 1, the influence of a mean flow is most 

pronounced for values of G below 0.5. Although the absolute difference in wave 

speeds for U = 0.0 and 0.1 is not as great as in the case 6 = 0, the relative 

difference is appreciable and for small values of z exceeds 100 percent. 

shows a definite change in the wall displacement amplitudes with mean flow at a 

given frequency. Note, however , that the displacement pattern for the different 

values of is similar. A s  illustrated in Figure 4 the effect of on dispersion 

is similar for type I waves with s = 2 and s = 3. For values of G near the 

cut-off frequency the influence of the mean flow is difficult to assess since the 

wave speed is inherently quite sensitive to small variations in 

singularity in the frequency equation, 

higher the wave speed is increased by an amount less than half the mean flow 

- 

Figure 3 

because of the 

For frequencies slightly above cut-off and 

velocity for both s = 2 and s = 3. Similar behavior has also been noted for values 

of s greater than 3. Mode shapes corresponding to these waves are given in 

Figures 5 and 6. In both cases the addition of a mean flow causes significant changes 

in the mode shapes corresponding to a given frequency. The overall wall displace- 

ment pattern, however, is similar to that for 5 = 0.0 and the mean flow tends 

only to shift the curves in the direction of increasing frequency. 

Discussion of Type I1 and Type 111 Waves 

Waves of type I1 and III do not exhibit any significant changes in phase 

velocity or  mode shape in the presence of physiologically meaningful values of 
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mean flow velocity. A s  shown in Figures 7 and 8 the dimensionless phase 

velocity c for s = 0,1,2,3 is the same within drawing accuracy for 'ij- = 0.0, 

0.05 and 0.1. Mode shapes are also unaffected by the mean flow as illustrated 

in Figures 9 and 10. For axisymmetric waves this behavior is expected since 

we have considered the blood to be inviscid and the vessel wall undergoes 

essentially only circumferential o r  axial displacements thereby preventing any 

strong coupling between the fluid and wall motions. When s is not zero, radial 

displacements of the vessel wall occur at  all frequencies above cut-off. Their 

relative magnitudes, however, are consistently small, and compared to waves of 

type I, the corresponding pressure flucuations are minute. The flow parameter 

U enters the analysis only through equation (1.10) for the pressure perturbation 

pi - pio which is initially quite small for type 11 and I11 waves and remains the 

same order of magnitude for all meaningful values of mean flow velocity. It may 

be expected,therefore, that the effect of a streaming flow in the vessel on the 

propagation of these waves is not significant. 

Conclusions and Experim ental Observations 

It is possible to compare our results for the speeds of axisymmetric 

type I waves with those of Morgan and Ferrante") for both an inviscid and 

viscous fluid. In order to nondimensionalize the dispersion curves for the viscous 

case it was necessary to prescribe values for the blood viscosity as well as the 

radius of the vessel and the effective Young's modulus and density of the vessel 

wall. The viscosity of blood normally ranges from about 4 to 7 centipoise 

depending on the hematocrit and temperature, and as a representative average we 
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have chosen a value of 5 centipoise. The radius of 8 mm corresponds to that of 

the larger vessels and the wall density is taken as 1 gm/cm . In view of the 3 

results of wave transmission studies in the aorta and vena cava of anesthetized 

6 2 dogs 11’ 13), we assume that the elastic modulus of the vessel is 10 dynes/cm . 
Figure 11 gives dispersion curves from the two analyses for U = 0.0 and 0.1. 

In the absence of a mean flow the wave speeds determined from Reference 14 for 

the inviscid case are consistently higher than ours for 0 below about 0.7 while 

above this frequency just the opposite behavior is observed. The marked dif- 

ference between the results can be attributed to the effects of bending rigidity 

of the vessel wall which are included in our theory and are of particular impor- 

tance at all but the lowest frequencies. Note that for increasing frequency the 

wave speed calculated from the inviscid analysis of Reference 14 approaches 

- 

zero and for sufficiently large values of w the velocity can even become negative. 

Similar behavior is observed for the case 

in speeds is not as great as for e = 0.0. In a strict sense this comparison is 

not valid since the approximate solution presented by Morgan and Ferrante 

= 0.1 although the relative difference 

requires that the stream velocity be small compared to the Moenss-Korteweg 
n 

. Our analysis did not impose h ( l  - v ~ )  
wave speed, i.e. t? << or e<< 2Fa 

2Pfa 

this restriction on the mean flow and it can be seen that even for values of W 

as large as 0 . 3  there is no great difference between the results for an inviscid 

fluid. 

For the case of small viscosity, the results of Morgan and Ferrante show 

that the wave speeds for the frequency range 0.0 < i3 < 1.0 are essentially 

16 



nondispersive irrespective of the mean flow velocity. 

velocity of pressure waves is given to a good approximation by the sum of the 

wave speed for zero mean flow and the average stream velocity. The marked 

difference between our results and the viscous fluid analysis of Reference 14 

may be due in part to the reasons cited previously for the inviscid case but 

perhaps more importantly to the fact that the radial inertia of the vessel wall 

was neglected by Morgan and Ferrante. Note, however, that for 0.0 < 0 < 0.2 

which corresponds to an actual frequency range of 0.0 to about 50 Hz for the 

dimensioned parameters chosen above, the three analyses yield results which 

a re  the same within 10 to 12 percent. 

Furthermore, the phase 

The effect of a mean flow on the propagation velocity of waves in blood 

vessels is pronounced only for pressure or distension waves which we have 

denoted as  type I. With only a single exception12), experimental investigations 

of the wave transmission characteristics of blood vessels have dealt exclusively 

with the propagation of naturally occurring or  artificially induced pressure waves 

(type I). Since the effect of a mean flow on phase velocity is theoretically only 

pronounced for this type of wave it is clear that an accurate interpretation of 

wave speed data requires information regarding the nature of the blood flow 

during the time the data were obtained. 

While studying the transmission characteristics of large amplitude 

artificial pressure waves in the vena cava of anesthetized dogs, we found that the 

signal speeds varied with respiration and were generally greater at inspiration 

than during the resting phase of the respiratory cycle (see Chapter III). By 
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measuring simultaneously the total and static venous pressure and the speed of 

induced pressure pulses we concluded that the difference in wave speeds could be 

attributed to the increased flow velocity during inspiration. To assess more 

accurately the validity of this theoretical analysis, a systematic study of the 

relationship between wave transmission velocity and blood flow in the aorta of 

anesthetized dogs has been undertaken'') and initial results indicate agreement 

with the predicted behavior. 
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11. THEORETICAL ANALYSIS OF 'IXE EFFECTS OF ANISOTROPY 
ON THE PROPAGATION OF WAVES IN BLOOD VESSELS 

Introduction 

The walls of blood vessels are complex structures composed of layers 

of various biological substances including elastin, collagen and smooth muscle 

which have different elastic properties and which appear in varying proportions 

according to the nature of the vessel , Estimates of the elastic moduli of these 

materials range from as little as 6 x 10 dynes/cm for relaxed smooth muscle 

to about 10 dynes/cm for collagen fibers 

7) 

4 2 

8 2 20-23) 

Judging from histological features which indicate the structural inhomo- 

geneity of blood vessels, their mechanical properties should not be expected to be 

uniform and isotropic. That is, the vessel may respond differently to stresses 

in the longitudinal and circumferential directions. Experimental evidence for 

this type of behavior has been presented by Bergel") who found the circumfer- 

ential Young' s modulus in an excised canine thoracic aorta to be about 1.5 times 

greater than the longitudinal modulus. Furthermore, McDonald has expressed 1) 

little doubt that arteries are anisotropic, with maximum stiffness in the circum- 

ferential direction. But he argues that strong axial tethering results in the 

vessel being relatively inextensible in that direction and therefore does not 

move longitudinally in the presence of a propagating pulse wave. According 

to McDonald this behavior then renders the vessel as functionally equivalent to 

an isotropic tube. 

To determine the actual extent of anisotropy in a single blood vessel, 
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Anliker and Moritz") have been studying the transmission characteristics of 

type 111 waves in the carotid artery of anesthetized dogs. Their results provide 

some information regarding the magnitude of the various elastic constants as 

well as a firm basis for refining our mathematical description of wave propagation 

in blood vessels. 

Basic Equations 

Postulating the existence of anisotropy, a more general theoretical 

description of the mechanical behavior of blood vessels can be obtained by con- 

sidering the vessel wall to be orthotropically elastic with different elastic 

properties in the longitudinal and circumferential directions. The two-dimensional 

analysis presented in Chapter I can be extended to include this type of behavior 

by simply introducing a modified form of the elastic laws in which stress and 

strain are still directly proportional but the proportionality constant is dependent 

upon the direction of the applied stress. 

We denote the elastic moduli for the longitudinal and circumferential 

directions by E and E respectively, the shear modulus by G and the two 

Poisson's ratios by v and v where v (v ) is the ratio of contraction in the 

direction P(x) to elongation in the direction x(P). Hooke' s law relating the 

stresses and strains then takes the form 

X P 

X P X P  
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U 
x "pup 

E =- -  
x E  E 

X P  

19) and the stresses cr u ,T are defined as  usaal , 
P' yxP x' P XP 

where the strains E ~ , E  

In general the Young' s moduli and Poisson' s ratios are mutually independent. 

However, when the system being analyzed is initially unstressed we can show 

by means of the Maxwell-Betti reciprocity theorem24) that 

E v  x x  

The shear modulus G must also be retained as  an independent parameter since 

the usual relation between E, v and G for isotropic materials is a direct con- 

sequence of their isotropy. Hence, for this plane stress formulation the con- 

stitutive law for the material is specified by five elastic parameters. For 

convenience we introduce a dimensionless shear modulus g, the ratio of the 

two elastic moduli y and the ratio of the two Poisson' s constants 1 2' 

1 - v  v 
2 = G(+) 

X 

(2.3) 
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The dimensionless stress resultants in the axial and circumferential 

directions and the inertia quantities associated with the vessel wall and the fluid 

are modified for the orthotropic case and are distinguished from the parameters 

in Chapter I by "tildes": 

T ( 1 - V V )  
N 10 x p  
'1= E h  

X 

aAp(1 - vxv ) 
N 

'2= E h  
X 

1 - v  v 
- a 2  a Pwh 

'w- E h  
X 

1 - v  v 
N x p 2  
'f= E h  a mf. 

X 

With these changes the linearized equations of motion for a thin shell in terms 

of the displacement components u, v, w can be rederived for an orthotropic 

material") and be come : 

n 

2 a v  N N 

L ( u ) + Z  ( v ) + L  ( W ) + ( G l + V  x ; 2 )- &2 21 22 23 

au av a% a% 
ap at2 

- q  (---+z'+@ +p)-=O. 
2 aa ap 
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The modified differential operators E.. are defined by: 
11 

2 N a2 a 
L22 = y l T + g - $ l  +3e ) 

ap aa 

2 

N a 2 a3 a3 
L 1 3 = y v  - - e  ( ~ - g - ~ )  

k a p  
2 x k  

N a2 
LZl = (Y1VX +a- 
N N a 2  a3 
L23- L32 l a p  l x  ao12ap 

h a p  

- = y - -  e (Y v +3g)- 

The equation of continuity, the linearized Euler equation and the boundary 

condition developed in the previous section remain valid and therefore can be 

reudced to the same expressions for the velocity potential (a) and apparent 

mass of the fluid (mf). We again assume solutions to equation (2.5) of the form 
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w N 

u = A exp[i -Jx - ct) +isp] sc 

N 

v = B expli 3 - ct) +ispl  sc 

N 0 IT w = C exp[i -(x - ct) + i sp  -t- i -1 
sc C 2 

and obtain a set of three linear homogeneous equations for the amplitude factors 

A B 

vanishing determinant. We introduce the following dimensionless parameters: 

N N  N 

and Csc which leads to a frequency equation in the form of a sc' sc 
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Then the determinant takes the form: 

‘ 4  I +YIS - 2YlS 2 +Y1l + 
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Results 

The frequency equation in the form of the determinant (2.9) for an ortho- 

N N N  tropic vessel contains eleven dimensionless parameters: 4 , 4 , s, h/a, p,w, c, vx, 

yl, y2 and E. With the exception of the parameters v y y and the above 

quantities are the same as those which appear in the analysis for an isotropic 

1 2  

x' 1' 2 

vessel with the only difference entering through the normalizing factor E /(1- v v ). 
X X P  

For the analysis in terms of nondimensional variables this normalization ef- 

fectively reduces the number of explicit independent elastic constants from five 

to four. It must be remembered however, that any physical interpretation of the 

dimensionless results requires that we specify values for the original five elastic 

constants. 

In order to arrive at physiologically meaningful conclusions we should 

restrict, to some degree, the range of acceptable values for these additional 

parameters. For example, by requiring the material of the vessel wall to be 

incompressible the Poisson' s ratios must satisfy certain incompressibility re- 

lations which are obtained directly from Hooke' s law. These equations show 

that v and v can lie between 0.0 and 1.0 and that the Poisson's ratios for 

the radial direction (although they do not appear explicitly in the equilibrium 
X P 

equations for the vessel) may not be neglected when considering incompressibility 

X and vP' In this 
and must assume values compatible with those chosen for v 

analysis we will assume that these restrictions regarding the contraction of the 

vessel wall through its thickness are fulfilled. From equation (2.3) we have 

= y2vx and it follows that both v and y v satisfy the condition 
X 2 x  
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0 . O S V  y v 5 1 . 0  (2.10) x) 2 x 

For an isotropic vessel the dimensionless shear modulus 2 is a function 

only of the Poisson' s ratio and for an incompressible material (Poisson' s ratio = 0 .5 )  

g = 0.25. Unfortunately, no experimental information is yet available on which to 

base assumptions regarding the value of the shear modulus of blood vessels, The 

Young' s modulus ratio Y may theoretically assume any positive value. However, 

experimental measurements indicate that the circumferential and axial elastic 

moduli of blood vessels are well within an order of magnitude of each other 

with E generally 2 to 3 times greater than E . It seems appropriate 

therefore, to consider values of 7 

N 

1 

20,25) 
P X 

within the range 0.0 to 5.0.  1 

For this analysis the determinant no longer retains its symmetry since 

the parameter y 

in the circumferential and radial equations. In the limiting case of vanishingly 

small initial stresses the reciprocity relation Y = Y is applicable and the 

determinant becomes symmetric. In the orthotropic shell we again find three 

classes of propagating waves denoted as type I, I1 o r  I11 according to the previous 

convention. 

appears in the equation for axial equilibrium while Y1 appears 2 

1 2  

For the limiting case of vanishing frequency we can directly obtain the 

approximate phase velocities of axisymmetric waves (6 = 0). Taking 

and 4" 4" 
(type I) as w" - c O  is given by 

s 1 

and h/a small compared to 1, the phase velocity of pressure waves 
1' 2 
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(2.11) 

Note that both terms are of the same order; namely O(h/a). When the initial 

stresses (t ) are taken as zero and h/a << 1 this reduces to 
1' 2 

*, 
N2 c = , ( l - Y V )  y1 2 
I 2pa/h 2 x  (2.12) 

or  

E h  
c -  2 - 1  (2.13) 
1 2Pfa 

the Moens-Korteweg equation. Observe that of the five elastic parameters only 

the Circumferential Young's modulus has an effect on the phase velocity in this 

limiting example. Axisymmetric type I1 waves are  characterized by pure 

circumferential wall displacements and propagate with a velocity 

(2.14) 

at all frequencies. The strong influence of the shear modulus 

the wave speed is particularly apparent when the initial stresses are  small. In 

terms of dimensional variables (2.14) becomes 

in determining 

T1O 'xaAp G 2 + +-(1 +3e ) 
2 =- 
11 P h Pwh Pw W 

(2.15) 

which is independent of either the axial or  circumferential Young' s modulus. 

A s  w" + O  the phase velocity of type 111 or  axial waves approaches 
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(2.16) 

In contrast to equation (2.11) the fractional term appearing here is of higher 

order compared to 1 + 2 + v G 

speed is necessarily small. 

and therefore its role in determining the wave 
1 x 2  

When ql and G2 +O and h/a << 1 we obtain 

X 
E 2 c =  

I11 p (1 - v v ) 
W X P  

(2.17) 

indicating the predominant influence of the axial modulus on the velocity of axial 

waves. 

The extent to which orthotropy influences the wave transmission charac- 

teristics of the vessel can be determined from a parametric analysis of the 

frequency equation. The results presented here do not comprise a complete 

parametric study of the effects of anisotropy since our intentions have been only 

to obtain an initial indication of the role of anisotropy in determining the propaga- 

tion velocities and mode shapes of various types of waves. Furthermore, it is 

hoped that the selected results may provide the information most useful to the 

experimentalist for determining the degree of anisotropy and its variations in 

blood vessels. More specifically, with only two exceptions, graphs illustrating 

the effects of anisotropy on the mode shapes are not included since the changes 

produced are relatively small and do not reflect any major deviations from the 

displacement patterns for isotropic vessels. 

To facilitate comparison with other analyses, in particular Reference 8, 

but also References 26 and 27, we consider the vessel to be initially unstressed 

29 



. With this restri which implies that y1 = 

and denote the value of the parameter with y. 

Effect of the Ratio y 

y2 

Waves of Type I 

The effect of the Young' s modulus ratio y on the dimensionless phase 

velocity of type I waves is illustrated in Figures 12 and 13 for s = 0 and s = 2, 

The values of v and correspond to those of an isotropic incompressible 

vessel while the radius to wall thickness ratio a/h applies for the larger arteries 

and average size veins (Reference 7). A s  a consequence of the assumed incom- 

pressibility of the vessel wall and the fact that v = 0.5, the range of y is 

restricted such that 0.0 5 Y 5 2. 0. 

frequencies the dimensionless phase velocity z increases with increasing values 

of y although the velocity is significantly affected by changes in y only when 

0" < 0.5. For w" > 0.5 the influence of the Young' s modulus ratio on the wave 

speed diminishes rapidly with increasing frequency as exemplified at w" = 1.0 

where a 400 percent increase in Y produces less than a 10 percent increase in z. 
The corresponding effect on the dimensional phase velocity c is radically 

X 

X 

From Figure 12 (s = 0) we see that for all 

different and depends not only on the values chosen for the elastic moduli but, even 

more importantly, on the manner in which the two  young'^ moduli vary with 7. 

6 2 For example, i f  we assume that E is constant and equal to 10 dynes/cm 

the phase velocity of type I waves corresponding to a frequency of w" = 1.0 

X 

y is increased from 0.5 to 2.0. On the other 

2 s/cm 
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30 percent for the same increase in Y at w" = 1.0. A s  the frequency approaches 

zero the value of the phase velocity is appro 

dimensionless variables and 

Obviously, if E is constant, c will not vary 

frequency even though a marked increase in z 
P 

with changes in 

is observed as 

Y at zero 

Y increases 

from 0.5 to 2.0. 

With the exception of the cut-off frequency which increases slightly with 

rising Y, the dispersion of type I waves with s = 2 is not appreciabLy changed 

by variations in Y as shown in Figure 13. Nonaxisymmetric waves with s 22 

exhibit similar behavior with respect to variations in Y. By considering smaller 

values of the Poisson's ratio v we can explore the effect of larger values of y 

on the wave speeds while still satisfying the condition of vessel incompressibility 

(equation 2.10). The graph in Figure 14 gives dispersion curves for s = 0 and 

for various y between 1.0 and 5.0 with v = 0.2. In this instance a marked 

influence of the Young' s modulus ratio on the nondimensional phase velocity ex- 

tends throughout the frequency range 0.0 to 1.0 and relative increases in 

with y are significantly greater than those for the example given in Figure 12. 

When s = 2 the larger values of y again tend only to increase slightly the cut- 

off frequencies. 

X 

X 

Waves of Type II 

According to equations (2.14 and 2.15) the phase velocity of axisymmetric 

ent of the Young' s moduli for all frequencies and in the 

sses is governed entirely by the shear modulus and the 
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wall thickness to radius ratio. For s = 2 the ratio y exhibits only a mild 

influence on the dispersion as indicated in Figure 15 which shows the effect to be 

limited to a range of frequencies near the cut-off value. The behavior for large 

values of Y is quite similar. 

Waves of Type 111 

The transmission velocity of axial waves with s = 0 is also relatively 

insensitive to variations in Y as is evident from Figure 16. Inspection of 

equation (2.16) reveals that even at low frequencies the ratio 

term which is of second order small for the parameter values considered. A s  

shown in Figure 17, when s = 2 it is primarily the cut-off frequencies which 

change with 7 and show a consistent increase as 7 is varied between 0 .5  and 2.0.  

Note the different scale used in this figure. 

is contained in a 

We recall that y is defined in terms of either the Poisson' s ratios as 

v /vx or the Young's moduli as E /E 

implicitly contained in the frequency equation through the ratio 'Y, the results 

of this section also reflect the effect of variations in v on the dimensionless 

phase velocities for fixed values of vx. 

Effect of the Poisson' s Ratio 

Since the parameter v is only 
P P x' P 

P 

Unlike the other elastic parameters, v appears in the frequency 
X 

equation as a multiplier of one of the stress resultants in terms of the form 

vxi2. Hence the degree of initial prestress will have a definite influence on the 

extent to which vx affects the wave speeds in an orthotropic vessel. It is 

necessary therefore, to include in th alysis both the case ero and nonzero 
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values of 6 to approximately assess the importance of variations in the 2 

parameter v 
X' 

Waves of Type I 

Figure 18 illustrates the dispersion of axisymmetric type I waves in the 

absence of initial stresses for v = 0.0,O. 4,O. 6 and 0.8,while y and have 

values corresponding to isotropy in the axial and circumferential directions. In 

addition it is understood that the elastic parameters for the radial direction, 

although they do not appear explicitly in the analysis, assume values compatible 

with the requirement of vessel incompressibility. A t  all frequencies we see 

X 

that the dimensionless phase velocity decreases with rising values of v 

w" < 0.4 this decrease in 

For 
X' 

is particularly pronounce4 while in the region 

w" > 0.6  the speed varies only slightly with changes in v 

this figure and Figure 12,which depicts the effect of variations in Y on E, may 

The similarity between 
X' 

be attributed to the fact that for s = 0 and = 0.0, v enters the frequency 2 X 

equation only through the product 'YV and no distinction can be made between 
X 

variations in Y with fixed v and variations in v with constant Y. For the 

case of nonvanishing y , variations in v 

X X 

are  manifested in an entirely different 2 X 

fashion as evidenced in Figure 19 where we have taken 

emphasized that these dispersion curves, as well as others for which 

= 0.4. It should be 2 

# 0.0, 2 

are approximate since the assumption that Y = Y = Y is valid only when all initial 1 2  

stresses vanish. This illustration shows that the wave speed consistently 

increases with increasing v 

at low frequencies (w" < 0.3) but becomes increasingly pronounced for 0" > 0.5. 

and that the influence of vx is relatively minor 
X 
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Interestingly, this behavior is completely opposite that observed f 

it appears that any effect the terms 'yv 

frequencies is negated by the quantity v q 
might have on the wave 

X 

x 2' 

For all values of > 0.0 the dispersion pattern is similar to that in 2 

Figure 19 although the range of values assumed by c for 0.0 < vx < 0.8 becomes 

greater as increases. Nonaxisymmetric waves with s 2 2  are only affected 

by variations in the Poisson's ratio when { > 0.0, i. e. in the presence of an 

initial transmural pressure. Figure 20 shows that for s = 2 the phase 

velocities undergo substantial increases as v 

remains essentially unchanged and the cut-off frequency is not shifted. Similar 

2 

2 

is raised although the dispersion 
X 

behavior is observed for s > 2 and to a lesser degree for smaller values of 4" 

on the actual 

2' 

To determine the corresponding effect of variations in v 
X 

phase velocities of these waves it is necessary to multiply 5 by the normalization 

2 -1/2 
factor which, for constant E and Y = 1.0, is proportional to (1 - vx) 

X 

Waves of Type II 

Referring once again to equation (2.14) which is valid at all frequencies, 

we see that the phase velocity of axisymmetric torsion waves is independent of 

v when the initial stress i2 vanishes,whereas for { # 0.0 the square of 
X 2 

the wave speed is a linear function of the Poisson's ratio. This behavior is 

illustrated in Figure 21 where q2 = 0.4 and Y and 

isotropy in the axial and circumferential directions. Again, the Poisson' s 

assume the values for 

ratio for the radial direction must be of a value such that incompr 

. 0 to 0.8 the phase 
X 
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velocity shows an overall increase of about 50 percent and the dispersion is 

unchanged. 

For s = 2 and zero transmural pressure, the dispersion characteristics 

are given in Figure 22. The cut-off frequency as for vessels with different v 

well as the velocity for large values of w" are unaffected by v 

decrease in phase velocity with increasing values of Poisson' s ratio is apparent 

for the frequency range 1.0 < w" e 4.0. Of particular interest is the double- 

valuedness of E which is evident here in the dispersion curve for v = 0.8. 

Inspection of the corresponding mode shapes in Figure 23 indicates that these 

different velocities apply to two distinct waves propagating in the positive direction. 

Although these disturbances are of the same frequency, they each possess a 

characteristic displacement pattern and wave length in addition to their different 

phase velocities. Note that for the parameter values chosen here this behavior 

is possible only when v 

mode shapes at a single frequency is not in conflict with any physical or 

mathematical principles underlying this analysis (e. g. continuity, uniqueness) 

and both waves constitute equally admissible solutions to the frequency equation 

X 

A significant 
X' 

X 

2 0.6.  It may be stressed that the existence of two 
X 

(2.9). 

A somewhat different relationship between dispersion and Poisson' s ratio 

occurs when 4" = 0.4 as is evident from the graph in Figure 24. Here  the phase 

velocity is again a single-valued function of w" and for frequencies less than about 

3.0,  E decreases as v 

phase velocity shows a consistent increase with v 

2 

is varied from 0.0 to 0.8, However, for 0" > 3 .2  the 

This interesting pattern has 

X 

x' 
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been observed in the dispersion curves for various values of 

and 0.8 and for waves with s > 2. 

between 0.1 2 

Waves of Type I11 

The nondimensional phase velocity of type 111 axisymmetric waves is 

insensitive to variations in v for zero transmural pressure (6 = 0.0) and 
X 2 

only mildly affected when G # 0.0. In either case the waves are nondispersive 

and for all G > 0.0 their speeds increase with rising v For example, when 2 X' 

q = 0.4 and v is varied from 0.0 to 0.8 the phase velocity increases only 

about 15 percent. Considering waves with s = 2, the influence of the Poisson' s 

ratio is reflected in the dispersion curves similarly for all values of 6 

Figure 25 depicts the typical changes in wave speed brought about by variations 

in v for type I11 waves with s = 2. Although the cut-off frequency remains 

unchanged the velocities show an increase with v 

2 

N 

2 X 

2' 

X 

for all G. 
X 

N 

Effect of g 

For an orthotropic material the shear modulus is an independent parameter 

and is entirely unrelated to the other elastic constants. A s  mentioned previously, 

no information is available regarding the behavior of blood vessels when subjected 

to shear stresses and therefore, we can only make educated guesses as to the 

acceptable range of values for the dimensionless shear modulus 2. Since 

g = 0.25 for an isotropic incompressible material and we assume the vessel 

is not strongly anisotropic,we shall cowider, initially, values for 

0.2 and 1.0. The results are also indicative of the effect of variations in G 

N 

between 

on the true wave speed since the normalizing factor is independent of the shear 
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modulus. 

Waves of Type I 

Inspection of the determinant (equation 2.9) reveals that when s = 0 the 

shear modulus appears only in the solution which describes the transmission 

of type I1 waves. Hence,the velocities of symmetric type I and type 111 waves 

are unaffected by variations in E. Figure 26 indicates for s = 2 the relationship 

between E and for various from 0.2 to 1.0. The dimensionless phase 

velocity shows an increase with increasing 2 for all frequencies although these 

changes are  most pronounced in the range 0.1 < w" < 0.6. In addition the cut-off 

frequency is independent of 2. 

Waves of Type I1 

For s = 0 this vibrational mode is one of pure shear and does not involve 

any axial or radial displacements of the vessel wall and we therefore expect the 

shear modulus to have an important effect on the wave speeds. This is indeed 

the case as shown in Figure 27 where a very strong dependence of the phase 

velocity on z is evident. Notice that the speeds are considerably higher than in 

any of the preceding cases for waves of this type,and for nonvanishing or  1 

would increase even more according to equation (2.14). 

Dispersion curves for nonaxisymmetric waves with s = 2 are shown in 

Figure 28. Notice that for 2 2 0.4 the phase velocity becomes double-valued 

over a certain range of frequencies and indicates that two different vibrational 

modes can occur at the same frequency. Cut-off frequencies still exist in the 

sense that there are frequencies below which disturbances of the type considered 

2 
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cannot propagate; however they do not necessarily coincide with values of w" 

for which the phase velocity becomes infinite. When 

the minimum admissible solution to the f r  

the phase velocity (z) at this frequency is about 0.85. 

For values of 

= 1.0, for 

and E where two different modes can exist, increases 

in the shear modulus cause the speeds of the slower waves to increase slightly 

while the fast waves exhibit a decrease in velocity. When is single-valued 

the wave speeds increase with rising E. 

Since these dispersion curves represent a strong deviation from the case 

for the two dimensionally isotropic vessel, we present in Figure 29 the cor- 

responding mode shapes for E = 0 .2 ,O .  6 and 1. 0. We notice immediately 

that a marked influence of E on the wall displacements, particularly in the 

axial and Circumferential directions, is apparent throughout the frequency 

range considered. A t  high frequencies (z > 2.0) the circumferential displace- 

ments Ivl become smaller with increasing values of the shear modulus while 

the axial displacements lul show a progressive increase. For E = 1.0 the 

mode shape at high frequency does not strictly conform to that of a type I1 wave 

since the circumferential component of the displacement is not dominant. In 

fact, for this case, the axial and circumferential displacements are equal and 

the radial component approaches zero. 

Waves of Type 111 

A s  mentioned previously,axisymmetric type III waves are independent of 

ents ce any shear strains. 
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Figure 30 depicts results for s = 2 and we observe a progressive increase in 

phase velocity with rising E. Although it is not clearly evident from this graph, 

the cut-off frequency is unaffected by variations in E. 

Discussion 

The results of the preceding section are incomplete in so far  as they in- 

clude the effects of anisotropy on the dispersion of only a few of the infinitely 

many waves which can theoretically occur and be propagated. However, the 

types of waves which have been discussed, it is felt, represent those which can 

most readily be induced or observed in the living system (particularly s = 0) 

and thus lend themselves to experimental investigation. These findings indicate 

that the dimensionless phase velocities of nonaxisymmetric waves are in general 

not strongly influenced by variations in the elastic parameters except in the 

neighborhood of the cut-off frequencies where these waves display rather dramatic 

dispersive properties. Although experimental verification of these waves has thus 

far eluded investigators, the eventual study of waves with s 2 2 will provide 

valuable information regarding the elastic and viscoelastic properties of blood ves- 

sels. 

The effects of anisotropy and its variations appear to be most pronounced in 

the dispersion curves for axisymmetric waves. For pressure waves (type I),the 

Young' s modulus ratio y and the Poisson' s ratio v are equally important 

factors in determining wave speed,although the role of v is dependent upon 

the value of the initial transmural pressure. Characteristics of type II waves, 

on the other hand, are independent of y and, as expected, are influenced 

X 

X 
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primarily by the shear modulus E. For nonvanishing 

Poisson' s ratio also produced changes in ave speed. A s  p 

dispersion curves for axial waves (type ID) reflect little change 

in any of the three elastic parameters considered although we have shown 

(equation 2.17) that the phase velocity depends directly on the axial Young' s 

modulus E 

normalized the velocity to with the reference velocity c* which is also 

dependent upon E This renders the dimensionless phase velocity inde- 

pendent of Ex and obscures the fact that the actual velocity c is directly 

proportional to JiT at all frequencies. 

variations in  th 
2 

This apparent discrepancy is accounted for by the fact that we have 
X' 

P 

x' 

X 

Recent papers by Mirsk?') and Atabek27) have investigated theoretically 

some aspects of wave transmission in orthotropic tubes filled with viscous fluid. 

Atabek considers as a model for the vessel a tethered initially stressed elastic 

membrane while Mirsky studies the effects of anisotropy in an unstressed thick 

walled shell with bending rigidity. In both cases, results are obtained only for 

small values of the parameter a = a E  which is essentially the square root of 

an unsteady Reynolds number,and the studies are limited to the propagation of 

axisymmetric type I and type 111 waves. Unfortunately we cannot compare our 

findings with those of Atabek or Mirsky since they do not discuss the transmission 

characteristics of these two waves in the inviscid limit, i. e. for a! -00, and it 

is not possible to extrapolate their results for this contingency. Furthermore, 

questions may be raised regarding the significance of Atabek' s results describing 

the propagation of axisyrnmetric pressure waves (s = 0, type I) as a approaches 
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zero since the wave speed also tends toward zero. This may be due to the fact 

that the linearized form of the Navier-Stokes equations do not accurately repre- 

sent the flow for values of a! < 2. 

Comparison with Experimental Results 

Anliker and Moritz have undertaken an investigation of the transmission 

characteristics of artificially induced, &symmetric type 111 waves in the 

carotid artery of anesthetized dogs12). Their initial results show that,depending 

on frequency,the speed of axial waves is about 2 to 4 times higher than that of 

pressure waves, and according to the approximate equations (2.13) and (2.17) 

these differences in wave speed indicate that the vessel is substantially stiffer 

in the circumferential than in the axial direction. The values of Y calculated 

from these data range from about 2 to 5 which is interpreted as being a strong 

indication of the anisotropic nature of the carotid artery. Data regarding the 

propagation of torsion waves are required before the shear modulus can be 

accurately determined. 
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111. THE TRANSMISSION CHARACTERISTICS OF LARGE AND SMALL 
PRESSURE WAVES IN THE ABDOMINAL VENA CAVA 

Introduction 

Extensive studies have been made on the mechanical behavior of larger 

arteries of various species, but little information is available regarding the 

dynamic elastic properties of veins even though their role in maintaining and 

controlling circulation is certainly no less important than that of arteries. This 

lack of knowledge may in part be attributed to the difficulties encountered in 

obtaining quantitative data on the distensibility of veins. These difficulties are 

primarily due to the inherently high flexibility of veins, their complex anatomy 

and the low transmural pressure that prevails in most parts of the venous system. 

Even small variations in the transmural pressure produced for example by 

respiration, changes in posture and muscular contraction may cause substantial 

changes in the geometry of the vessels, in their state of stress and in the elastic 

o r  viscoelastic properties of their walls, which all can strongly affect the 

distensibility of the vessels, Since these variations occur naturally and are not 

necessarily small, it must also be expected that veins exhibit a more complicated 

behavior than arteries. 

It is well known that the mechanical behavior of individual blood vessels 

can be studied indirectly in terms of their wave transmission characteristics. 

This approach is particularly convenient since it does not require any trauma 

of the vessel wall and yields essentially local and instantaneous values for the 

changing elastic and viscoelastic parameters. Also, the availability of 
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ultrasound sensors has made it possible to adapt the wave transmission techniques 

validated in animal experiments to the noninvasive study of large arteries and 

veins in the extremities of man. This should facilitate extension of present 

knowledge of the behavior of individual superficial limb veins which has been 

obtained by measuring the pressure rises induced by the injection of known 

volumes of fluid into temporarily isolated segments of veins in situ 28). How- 

ever, before a meaningful quantitative interpretation of the wave transmission 

properties of these vessels is possible, we must establish a mathematical theory 

that predicts these properties with sufficient accuracy as functions of the geometric 

and physical features of the vessels. 

-- 

Medical researchers have measured transmission properties of naturally 

occurring and artificially induced pressure waves in arteries as well as 

veins 

do not lend themselves to an incisive assessment of the relevance and accuracy 

of the various mathematical models that have been postulated for the mechanical 

behavior of the blood vessels. In most cases the shapes of the pressure signals 

were too restricted or  the amplitudes too large to allow for a broad evaluation 

of basic wave transmission properties such as dispersion and attenuation. 

1,29-35) . The data obtained in these studies and related work, however, 

In view of the significance of certain nonlinear phenomena affecting the 

transmission of large amplitude pressure signals ''9 319 36) we are presenting 

here our findings on the propagation of both large and small pressure waves in 

the abdominal vena cava of anesthetized dogs. A s  will be shown, the nonlinear 

behavior must be taken into account in the interpretation of much of the published 
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data and in the design of future experiments directed to the elucidation of the 

mechanisms mediating changes in the distensibility of blood vessels. 

Experimental Methods 

Waves in blood vessels can be characterized by either wall displacements, 

intraluminal pressure perturbations or  flow fluctuations. Depending on the type 

and frequency of the waves considered we may find that only one or two of these 

variables are of sufficient magnitude to allow for accurate measurements. For 

example, distension waves are easily sensed in terms of their pressure or  flow 

fluctuations, while for the detection of axial waves it is most convenient to 

minitor the corresponding axial wall displacements"). Obviously, the choice 

of variables to be measured depends not only on the nature of the waves but also 

on the sensitivity of available transducers and on whether the waves are  to be 

recorded by an invasive or  a noninvasive technique. Pressure or distension waves 

can be readily induced in arteries and are  observable over distances that are  

relatively large compared to the vessel radii when the frequency is less than 

100 Hz ''I. Guided by these facts we have generated artificial distension 

waves in the vena cava of anesthetized dogs. 

The pressure perturbations in the vena cava were minitored by highly 

sensitive catheter-tip manometers utilizing Bytrex pressure cells Model HFD-5*. 

One of these transducers is shown in Figure 31. It has a diameter of 3 mm and a 

sensitivity of 80 to 100 pV/mm Hg with an excitation of 25 volts and therefore 

allows for a resolution of a fraction of one rnm H 0. The natural frequency of 2 -  

*Schaevitz-Bytrex, Inc. , 223 Crescent Street, Waltham, Mass, 02154 
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such pressure cells was found to be above 60 kHz in air and their response is 

linear within 1% from 0 to 300 mm Hg. The shielded leads and the venting tube 

are protected by a heat-shrinkable plastic tube forming a leak-proof flexible 

catheter. The pressure cell itself is gold plated to reduce the corrosive effects 

of body fluids. The signal from the solid state strain gauge bridge used in 

these transducers is amplified by Astrodata amplifiers Model 885** and recorded 

on a Honeywell Visicorder Model 1108 equipped with galvanometers whose 

frequency response is flat up to 3300 Hz. 

By injecting into a blood vessel a given volume of blood or saline from a 

spring-loaded syringe one can produce a pressure pulse whose amplitude and 

shape depend on the volume and injection time as well as the distensibility of the 

vessel. In our experiments we induced such signals with the syringe shown in 

Figure 32. A volume of 0.5 or  1.0 cm of blood or saline could be injected in 

10 to 20 msec depending on the stiffness of the spring and the length and 

diameter of the cannula. The amplitudes of the resulting pressure signals were 

generally between 30 and 60 mm Hg for injections of 0.5 cm and as  much as 225 

mm Hg for 1 cm . 

3 

3 

3 

Figure 33 shows representative tracings of pressure fluctuations in the 

carotid artery and the abdominal vena cava of an anesthetized dog during the 

transmission of a pressure pulse induced by the injection of 0.5 cm of saline 

into a femoral vein. In this instance the arterial blood pressure (BP) was 

3 

**Astrodata, Inc., 240 E. Palais Road, Anaheim, Calif. 92805. 
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135/95 mm Hg while the unperturbed venous pressure (P 

The distance between the two catheter-tip m 

the radius to wall thic s ratio (a/h) for 

scales for the venous and arterial pressure tracings and time are  indicated. 

Each of the two venous pressure curves has a different zero point since they 

were separated for illustration purposes. 

The speed of the pressure pulse is usually defined by the transmission 

time A t  of a characteristic point of the wave front over a given distance Ax. 

A s  a characteristic point we have chosen here the intersection of the tangent in 

the inflection point of the wave front with a line approximating the unperturbed 

venous pressure. For this point A t  could be measured with a high degree of 

repeatability in contrast to other admissible choices for the characteristic 

point, which displayed a rather wide scatter in the measurement of the 

transmission times . 
While spring-loaded syringes a re  convenient tools for inducing transient 

pressure waves, they do not allow for accurate control of the shape of the pulse. 

For example, slight changes in the orientation of the cannula at the point of 

injection can produce marked differences in the pulse shape. Moreover, in 

order to determine the wave velocity as a function of the frequency from such 

pulse waves it would be necessary to evaluate the Fourier spectra of the signal 

at different points along the vessel. These laborious Fourier transform computa- 

tions can be avoided by generating a sinusoidal pressure signal. In some of our 

S e 
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induced by a reciprocating piston connected to a 1/8 hp D. C. motor by means of 

a timing belt and scotch yoke to enforce pure sinusoidal motions of the piston. 

3 The stroke volume and frequency of the pump can be varied from 0 to 5.0 cm 

and 0 to 40 Hz respectively. To eliminate high frequency pressure fluctuations 

due to inherent structural vibrations of the system, a damping device was in- 

stalled between the cannula and pump cylinder. Damping is provided by an air 

cushion that is separated from the fluid by a rubber membrane and whose pres- 

sure can be varied to optimize the damping characteristics. Since no check 

valve is used the net flow of the pump is zero. 

The pump was connected to the vena cava by a flexible plastic cannula 

that was inserted through a femoral vein. Typical tracings of sinusoidal pressure 

waves induced by the pump are  shown in Figure 35. A s  illustrated in this figure, 

the speed of the signals over a known distance Ax was evaluated from the 

transmission time A t  of the points of intersection of the tangents to the sine 

wave at two successive inflection points. 

With the pump used it was not possible to induce sine waves of small 

amplitudes over a frequency range wide enough for an extensive study of 

dispersion. Also, the inertia of the pump and of the fluid contained in it was 

sufficiently large to cause some distortions of the sine waves during the starting 

phase of the pump at essentially all frequencies between 4 and 40 Hz. By 

inserting an electrically driven piston (Figure 36) directly into a femoral vein 

and positioning it near the bifurcation, sine waves could be generated with 

frequencies between 15 and 100 Hz. The piston consists of a lightweight 

aluminum rod that is attached to the core of a solenoid and is protected by a 
47 



brass cylinder which also prevents any direct contact of the moving rod with the 

vessel wall. The piston diameter is 5 . 5  mm and its m 

6.5 mm for frequencies between 20 and 100 Hz. The sinusoidal displacements 

of the piston are induced by means of an electronic oscillator and a high fidelity 

amplifier. 

A t  high frequencies one can avoid noticeable reflection interference even 

when the amplitudes of the waves a re  not necessarily very small") and when no 

dissipative mechanisms are present. This is accomplished by generating finite 

trains of sine waves with the aid of a tone burst generator. For sufficiently 

short trains the waves can be recorded before the reflections arrive at the sites 

of the transducers. Tracings of representative pressure signals of this type are  

given in Figure 37. 

The attenuation of these signals was determined by comparing the peak- 

to-peak amplitudes of corresponding waves at the two pressure recording sites. 

The amplitude is defined as shown and denoted by A 

and by A at the distal transducer. 

at the proximal transducer 
0 

For mildly dispersive media, i. e. those in which the phase velocity does 

not vary by more than a few percent whenever the frequency is changed by lo%, 

the speed of a finite train of sine waves can be interpreted as a good approximation 

of the phase velocity corresponding to the frequency of the sine waves. This is 

evident from the Fourier spectra of finite tr 

The uppermost pair of graphs illustrates a train of 2 1/2 sine waves of circular 

freque ft) and rrespon rier transform F(w) (right). The 

s of sine waves shown in Figure 38. 
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pairs of graphs in the center and at the bottom correspond respectively to 

trains of 4 1/2 and 8 1/2 sine waves of the same circular frequency w 

case the Fourier transform F(w) has a distinct maximum. at w 

length of the train, F(w) peaks more sharply at w = w and F(o ) dominates 

the spectrum in increasing proportion. In the limiting case of an infinitely long 

In each 
0' 

With increasing 
0' 

0' 0 

train F(w ) would be infinite at w = w 

gressive dominance of F(w ) with increasing length of the sine wave train 

implies that in a mildly dispersive medium such signals should have a speed of 

propagation which is a close approximation to the phase velocity corresponding 

to w 

having to perform extensive Fourier transform computations. 

attenuation characteristics of the vena cava can be obtained directly by measuring 

the amplitude ratio A/A 

and zero everywhere else. The pro- 
0 0 

0 

Most importantly, the dispersion of the vessel can be determined without 
0' 

Likewise, the 

for wave trains of various frequencies. 
0 

Experimental Procedure 

The animals used in the experiments were mongrel male dogs of uncertain 

age and weighed between 15.and 40 kg. They were anesthetized intravenously with 

30 mg/kg sodium pentobarbital (Nembutal). The dogs were kept in supine position 

throughout the experiment. A s  an indicator of the general physiologic state of 

the animals their arterial blood pressure was continuously recorded from a 

Statham manometer P23Dd connected to a cannula which was inserted into the 

left carotid artery or a femoral artery. In addition, their respiration was 

usually monitored by a mercury-filled silastic tube stretched across the chest. 

The variations in gauge resistance with breathing were recorded to allow for the 
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study of the effects of respiration on the wave transmission characteristics of 

the abdominal vena cava. Besides this, the venous pressur 

was continuously measured with a Statham P23BB transducer and a saline 

manometer with the cannula inserted through a femoral vein. The outputs from 

the Statham gauges were amplified with Honeywell Accudata Amplifiers Model 

M-104 and recorded on the Visicorder. 

The general experimental arrangement is schematically illustrated in 

Figure 39. To detect small pressure fluctuations two Bytrex catheter-tip 

manometers were inserted into the right external jugular vein and positioned 

in the abdominal vena cava with the aid of an X-ray fluoroscope. The catheter- 

tip manometers, the Statham gauges, amplifiers and recording equipment were 

calibrated as  a system for each experiment. Depending on recording speed and 

amplitude of the signals we could evaluate A t  with an error  of 0 .3  to 1 .0  

milliseconds. 

When the artificial pressure or  distension waves were generated by the 

spring-loaded syringe or by the sinusoidal pump, the cannula from either device 

was inserted through a femoral vein and placed near the bifurcation. When the 

electrically driven vibrator was used, the brass sleeve which encloses the piston 

and has an outside diameter of 6.2 mm was disconnected from the vibrator, 

filled with heparnized saline and inserted through a femoral vein into the common 

iliac. The vibrator piston was then guided into the brass sleeve. This procedure 

was adopted to overcome the difficulties in manipulating the vibrator, which 

0 kg, and to facilitate the positioning of the relatively large brass 
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cylinder. 

The distance between the tip of the cannula or the tip of the vibrating piston 

and the nearest catheter-tip manometer was usually 3 to 7 cm, while the distance 

separating the two manometers ranged in general from 2 to 7 cm. These 

distances were determined radiographically with an accuracy of .1 cm by using 

an image intensifier and a radio-opaque grid with a mesh size of 1 cm and taking 

into account the effects of parallax. 

Theoretically the wave transmission properties of arteries and veins can 

be affected by changes in the transmural pressure and in the geometry of the 

vessels 

vessels from their wave propagation characteristics it is therefore desirable to 

know the geometry of the vessel and the prevailing transmural pressure. To 

determine the dispersion and attenuation of waves in the abdominal vena cava in 

the presence of a well-defined transmural pressure, the abdomen of the dog was 

opened by a midline incision from the lower end of the sternum to the pubis and 

the vena cava was exposed to atmospheric pressure by displacing the viscera, 

This surgical process also enabled us to observe the vena cava during the 

experiment and to measure with calipers its external diameter and wall thickness. 

Variations in the level of the transmural pressure were achieved with the aid of 

a tilt-table or  by occluding the vena cava above the hepatic branches with a 

balloon catheter. 

. For accurate estimates of the elastic properties of blood 8,9937) 
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Results 

Waves Generated by Spring-Loaded Syringe 

To assess the feasibility of utilizing wave transmission phenomena in 

large veins for the purpose of determining their mechanical properties under 

various conditions we induced relatively large pressure pulses in the vena cava 

of 20 anesthetized dogs with the spring-loaded syringe shown in Figure 32. The 

speed of the pressure signals normally ranged from 300 to 700 cm/sec and was 

found to depend strongly on the amplitude, the instantaneous transmural pressure 

and the general physiologic state of the animals. 

on the volume of saline injected, the injection time, the orientation of the syringe 

The amplitude itself depended 

cannula, the venous pressure and, of course, the local distensibility of the vessel. 

A typical example of the variation of the pulse speed with amplitude is illustrated 

in Figure 40 which shows that the signal induced by injecting 0 . 5  cm saline has 

an amplitude of 60 mm Hg and travels at a velocity of 500 cm/sec while the signal 

produced by 1 cm saline has an amplitude of 225 mm Hg and a speed of 774 cm/sec. 

3 

3 

The marked increase in wave speed with signal amplitude indicates that 

the vena cava exhibits nonlinear behavior with respect to large pressure signals. 

A s  a rule, pressure signals travel at a greater speed when they are superimposed 

on a higher transmural pressure and this behavior has been consistently observed 

in experiments in which the venous pressure was increased by as much as 200 mm 

H 2 0  by tilting the animal. Because of the apparent strong dependence of the 

wave transmission characteristics on transmural pressure in the vena cava, a 

detailed study of the relationship between these two quantities was conducted. 
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These experiments and their results a re  described in Chapter IV, 

By varying the location of the transducers we observed that the amplitude 

generally decreased with increasing distance from the cannula except in the 

neighborhood of the renal branches. The speed also varies as indicated in 

Figure 41 which depicts typical tracings of pressure waves induced by the 

spring-loaded syringe and recorded at four different relative locations (I-IV). 

In each case the maximum amplitude of the pulse at the proximal transducer is 

about the same while, as expected, the amplitude at the distal site progressively 

decreases with distance traveled as a result of dissipative mechanisms. Dif- 

ferences in the wave speed v indicate variations in the distensibility of the vena 

cava which a re  attributed either to geometrical changes or to variations in the 

elastic properties of the vessel wall caused, for example, by branch structure. 

Variations in the wave shape at the proximal transducer may be due to slight 

alterations in the orientation of the cannula at the point of injection. Near the 

renal branches we also noted changes in the wave shape which are presumably 

due to reflections. 

In the presence of a mean flow the velocity of pulse waves propagating 

in the direction of the flow is predicted to be approximately equal to the wave 

speed at zero mean flow plus the average stream velocity, 14) which generally 

is expected to be rather small in the vena cava compared with the propagation 

velocity of pressure pulses 

signals generated during inspiration were consistently greater than those 

induced during expiration or at the resting phase of the respiratory cycle. In 

, We observed that the speeds of pressure 
18,29) 
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some cases the difference exceeded 200 cm/sec as indicated in Table I. By 

measuring continuously the total and static (end and lateral) venous pressure we 

found that the blood flow velocity increased during inspiration by approximately 

the difference in the pulse wave speeds. Since we are primarily interested in 

studying the mechanical properties of the vena cava in terms of its wave trans- 

mission characteristics at known o r  negligible blood flow rates we have avoided 

these respiration-induced flow effects on the wave speed by consistently selecting 

data obtained during the resting phase of the respiratory cycle. 

Significant increases in wave speed were also produced by vagal stimula- 

tion, fibrillation of the heart and by injection into the vena cava of massive o r  

lethal doses of various drugs such as epinephrine, nembutal, KCI, NaC1, MgCl 

CaCl and KCN. In some cases the speed increased by more than 400%. These 

findings a re  currently under detailed investigation, with particular emphasis on 

venous motor control mechanisms including the effects of changes in venous 

pres sure. 

2' 

2 

With a reduction in the injection volume it is possible to generate suffi- 

ciently small pressure pulses by the spring-loaded syringe to minimize the 

observed nonlinear behavior with amplitude. But to obtain the dispersion and 

attenuation we would still have to determine the Fourier spectra of the signals. 

Waves Generated by Pump 

Initial results on the dispersive nature of the vena cava were obtained 

by measuring the speeds of pressure signals of the form of long trains of sine 

waves induced by a pump. The frequency and amplitude of the sine waves were 
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systematically varied. For peak-to-peak amplitudes less than 3 mm Hg no 

evidence of reflection interference could be observed between the bifurcation 

and the renal branches. This was concluded from the fact that the signals 

retained their sinusoidal character during propagation independent of frequency. 

In the exposed vena cava the speeds of such sine waves with frequencies between 

4 and 40 Hz ranged from about 60 to 400 cm/sec depending on pressure and the 

general physiological state of the animals. Representative dispersion curves 

are illustrated in Figure 42. In each case shown the speed varied by no more 

than 15% with frequency, which confirms that the exposed vena cava is not 

strongly dispersive. Each data point represents an average of 9 to 12 speed 

measurements in a series of wave trains induced during the resting phase of 

the respiratory cycle. The peak-to-peak amplitude of the waves at the proximal 

transducer was 2 to 4 mm Hg. 

For sinusoidal wave trains of sufficiently small amplitude the velocity was 

not dependent on the selection of the characteristic point and could be determined 

with greater certainty than in the case of single pressure pulses such as those 

generated by the spring-loaded syringe. Also, the signals clearly retained their 

sinusoidal form during propagation and no  forerunner^"^ *) were observed. 

These facts lend further support to the conclusion that the vena cava is not 

strongly dispersive and that effects of reflections are not noticeable. Conse- 

quently, when the amplitude of a sinusoidal pressure wave induced by the pump 

is small, the speed of such a signal can be interpreted a8 the phase velocity 

corresponding to the frequency of the sine waves. 
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An example of the manner in which the wave shape can be 

amplitude is shown in Figure 43. The four pairs of 

the pressure fluctuations induced by the pump for different stroke v 

two fixed stations in the abdominal vena cava. The distance between the trans- 

ducers was 4.0 cm and the frequency was 7.5 Hz. A s  the stroke volume of the 

pump is successively increased the peak-to-peak amplitude at the proximal site 

rises in this case from 3.5 to 9.8 mm Hg and the pressure waves become in- 

creasingly non-sinusoidal. One can readily discern a relative steepening of the 

wave front with respect to the phase of diminishing pressure as the amplitude of 

the wave increases. 

This amplitude phenomenon may be attributed to a pressure dependence 

of the wave speed. Whenever the speed increases markedly with pressure the 

peaks of the sinusoidal pressure waves travel faster than the valleys. This is 

further illustrated in Figure 44 in which the velocities of the peaks and valleys 

of near sinusoidal waves produced by the pump are given as a function of signal 

amplitude. For peak-to-peak amplitudes larger than about 5 mm Hg the speed 

of the wave peaks is noticeably greater than that of the valleys and the difference 

increases progressively with amplitude. Each data point corresponds to 9 to 12 

measurements of the transmission time. 

The veseel apparently behaves in a nonlinear fashion with respect to 

large pressure pulses which precludes the possibility of performing a harmonic 

analysis of such signals the purpose of determining dispersion and attenuation. 

The extent to which ref er ent wave d of an 
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induced pressure signal is illustrated in Figure 45 which shows five pairs of 

recordings that were obtained from identical transducer locations. Two possible 

manifestations of reflections can be discerned from the tracings. A t  6.8 Hz 

the first peak and valley appear to arrive at the distal transducer site with a 

definite time lag. However, the second peak seems to reach both transducers 

simultaneously. A s  the frequency is increased the relationship between the 

wave patterns beyond the first peak changes dramatically. For example, the 

second peak completely disappears at the proximal transducer for 9.7 Hz. 

Waves Generated by Vibrating Piston 

By generating finite trains of sine waves with the aid of the electrically 

driven piston it was possible to obtain extensive dispersion and attenuation data 

for waves in the exposed vena cava. Representative tracings of trains of dif- 

ferent frequencies generated in this manner a re  shown in Figure 46. Each of 

the tracings has a different zero point since they were separated for illustration 

purposes. Note that the signals a r e  attenuated during propagation but retain 

their sinusoidal character for all frequencies. 

Typical dispersion curves are given in Figures 47 and 48 for small 

pressure waves generated during the resting phase of the respiratory cycle. 

The amplitude of the signals was less than 20 mm H 0 and each data point 

represents an average of 9 to 12 speed measurements from recordings taken 

over a period of less than 5 seconds. 

2 

The speed of the induced sine waves ranged from 100 to 400 cm/sec for 

these experiments and exhibited only mild dispersion which was usually more 
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pronounced for frequencies below 50 Hz.  For frequencies between 20 and 100 H z  

the wave speed generally increased with increasing frequency. The significant 

differences in speed from animal to animal observed in our experiments may be 

attributed to differences in vessel geometry and to the physiological state of the 

animals which includes such factors as transmural pressure, depth of anesthesia 

and surgical trauma. An additional cause for these variations may be the location 

of the transducers relative to the bifurcation or renal branches. Figure 49 

illustrates the dependence of wave speed and dispersion on transducer location 

in the vena cava of a single animal. In this  experiment the distance between 

transducers was constant while their position relative to the bifurcation was 

systematically changed. Of particular interest a re  the marked variations in 

wave speed and dispersion with distance from the bifurcation. This behavior 

was investigated in 3 dogs and appears to be the result of significant variations 

in the local wave transmission characteristics of the vessel. 

Most of the pressure waves generated with the vibrating piston had peak- 

to-peak amplitudes less than 20 mm H 0 and there was no significant o r  2 

systematic variation in the speed of different wave peaks or valleys within the 

same wave train. It appears that for distension waves with amplitudes less 

than 20 mm H 2 0  and frequencies between 20 and 100 H z  the wave speed is 

independent of amplitude. For such small waves the vena cava behaves 

essentially in a linear fashion. For frequencies above 100 H z  the stoke of the 

vibrating piston used was too small to generate sufficiently strong pressure 

waves in the vena cava to allow for accurate measurements while below 20 H z  
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the shape of the signals deviated too much from that of true sine waves. 

Data regarding the attenuation characteristics of the vena cava with 

respect to sinusoidal pressure waves were obtained by comparing again the 

peak-to-peak pressures for various frequencies at the two transducer sites. 

Attenuation curves corresponding to the dispersion data given in Figures 47 and 

48 are illustrated in Figures 50 and 51. A s  in the case of the thoracic aorta 

the amplitude ratio A/A 

between 20 and 100 Hz decays exponentially with distance traveled. Also, high 

frequency waves a re  dissipated much more rapidly over a given distance than 

low frequency waves. Knowing the wave speed and frequency we can plot A/A 

as a function of the distance traveled in wavelengths and we find again that the 

amplitude ratio decays in the same exponential fashion for all frequencies: 

11) 

for pressure waves in the vena cava with frequencies 
0 

0 

-k AX A/A = e  7 
0 

where k is the attenuation coefficient o r  logarithmic decrement. Data from 

6 experiments indicate that k may vary from about 1 to 2.5 for the vena cava 

as compared with a range from 0.7 to 1.0 for the aorta. 

Discussion and Conclusions 

The propagation of large amplitude pressure waves induced by the spring- 

loaded syringe or by the pump appears to be affected by reflection interference 

and pronounced nonlinear phenomena. For waves with amplitudes exceeding 

a few mm Hg the speed increases markedly with signal amplitude and the wave 

front steepens during propagation. We also find an increase of the signal speed 

59 



by raising the level of the unperturbed transmural pressure. Therefore the 

observed amplitude dependence of the speed and the steepening of the wave front 

can be interpreted as  nonlinear phenomena attributable to the fact that the wave 

speed increases with pressure. Accordingly the steepening of the wave front 

may correspond to the early phases of the formation of a shock wave. This 

implies that a sufficiently strong pressure pulse may generate a shock wave in 

the vena cava which would manifest itself in the form of a sharp and audible 

sound. 

of shock waves is established by the occurrence of the venous pistol shot 

Clinical evidence supporting the possibility of the actual development 

39) . 
The wave transmission data obtained with signals induced by the spring- 

loaded syringe yielded valuable information regarding the gross behavior of 

the vena cava including the effects of pressure, respiration, various drugs, 

vagal stimulation and ventricular fibrillation. But these data did not allow for 

the actual determination of the dispersion and attenuation of pressure waves 

becuase of the strong nonlinearities that were observed. 

With the vibrating piston we could induce only pressure waves of small 

amplitude. The maximum volumetric displacement of the piston was about 

200 mm for frequencies below 70 Hz and decreased rapidly with increasing 

frequency above 80 Hz. For displacements of about 150 mm the peak-to-peak 

pressure amplitudes were generally of the order of 20 mm H 0 at normal 

transmural pressure levels and at a distance of 4 cm from the piston. The 

frequencies and shape of the waves generated in this fashion could be controlled 

with a high degree of accuracy and repeatability. Only distension waves were 

3 

3 

2 
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observed; no attempts were made to record axial or torsion waves. Non- 

axisymmetric waves8’ ’) if present did not exhibit sufficiently strong pressure 

fluctuations at the transducer sites to be recognizable. This was verified by 

placing the two transducers at various points of the same cross section (by 

twisting the catheter leads) and comparing the corresponding pressure variations. 

The fact that both transducers recorded the same signal with zero phase shift 

independent of transducer position suggests that the pressure waves were 

axisymmetric. 

From our experimental results it follows that the abdominal vena cava of 

anesthetized dogs does not exhibit much dispersion of distension waves with fre- 

quencies between 20 and 100 Hz. Although the dispersion may be considered as 

mild, it appears to vary markedly with location as indicated in Figure 49. The 

absence of strong dispersion of small axisymmetric distension waves is clearly 

in agreement with theoretical predictions8’ lo). However, the observed changes 

in the dispersive nature with location have not been anticipated. This may be due 

to the fact that the local variations in geometry and in the elastic and viscoelastic 

properties of the vessel wall and the surroundings are usually disregarded in 

theoretical analyses. It should be noted that when the wave speeds are measured 

over longer distances (Figure 48) the fluctuations in local dispersion charac- 

teristics may no longer be evident since the speed of the pressure waves between 

any two points of the vessel is an average measure of the mechanical properties. 

A s  in the aorta“) small pressure waves in the vena cava appear to decay 

- 

61 



exponentially with distance traveled in wavelengths independent of frequency. 

This dissipation of signal energy may be attributed primarily to viscoelastic 

damping in the vessel wall since theoretical considerations") indicate that the 

effects of blood viscosity are insignificant for the range of frequencies and type 

of waves investigated. Furthermore, radiation of energy into the surrounding 

medium cannot be a major contributing factor since the vessel was exposed 

during the experiments. 

Differences in attenuation are  also observed in various segments of the 

vena cava of each animal studied, but this aspect has not yet been systematically 

investigated. Before any definitive statement can be made regarding the accuracy 

of a mathematical model postulating the relationship between the dispersion, 

attenuation and mechanical properties of the vessel, we need additional informa- 

tion on the wave transmission characteristics of the vena cava. 

the dispersion and attenuation of axial and torsion waves would allow for the evalu- 

ation of the degree of anisotropy in the elastic and viscoelastic behavior of the 

vessel wall. 

For example, 

Although the wave velocity itself can serve as a measure of the disten- 

sibility of a blood vessel, it is commonly used to estimate the effective Young' s 

modulus of the vessel wall from the Moens-Korteweg equation: 

where c is the signal velocity, pf the density of the blood, h/a the thickness- 

to-radius ratio and E the effective Young' s modulus. Recent theoretical 

62 



studies"' 27' 40) indicate that the Moens-Korteweg equation constitutes a 

meaningful approximation for the speed of low frequency pressure waves for 

parameter values associated with large veins such as the vena cava. Applying 

this formula we have computed the effective Young' s modulus of the exposed 

abdominal vena cava from data obtained with the vibrating piston, For transmural 

pressures between 75 and 100 mm H 0, signal frequencies from 20 to 100 Hz 

and - values between 30 and 45, the effective Young' s modulus ranges from 

about 5 x 10 to 5 x 10 dynes/cm . These values for E for the vena cava eff 

wall are of the same order as  those found for the aorta . The distensibility 

of the veins however is much higher because of their large values for the radius 

to wall thickness ratio. 

2 
a 
h 

5 6 2 

8) 

An even greater range of values for the elastic modulus would be obtained 

from the speeds of large pressure waves induced by the spring-loaded syringe 

or the pump, However, the actual significance of these data is questionable 

in the light of the observed nonlinear behavior and apparent reflection phenomena. 

In fact, even the effective Young' s modulus derived from the speed of small 

amplitude pressure waves is relevant only when referred to the conditions under 

which the wave speeds were measured, which includes the respiratory phase 

and the transmural pressure. The relatively large variations in the effective 

Young' s modulus from animal to animal at comparable transmural pressures is 

probably due to differences in the physiologic state of the animals. 
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IV. THE EFFECT OF VARIATIONS IN TRANSMURAL 
PRESSURE ON THE TRANSMISSION CHARACTERISTICS 

O F  PRESSURE WAVES IN THE ABDOMINAL VENA CAVA 

Introduction 

Initial results of experiments in which the venous pressure was artifically 

varied indicated that the wave transmission characteristics of the vena cava were 

strongly affected by changes in transmural pressure. In addition, increases in 

wave speed produced, for example, by vagal stimulation or  the injection of 

various drugs into the circulatory system could possibly be in part the result 

of a change in transmural pressure induced by the stimuli. Even under normal 

conditions, relatively large fluctuations in the hydrostatic pressure in veins 

caused by postural variations can have serious effects on the cardiovascular 

system as evidencedby the fainting of patients who a re  suddenly brought to an 

upright position after an extended period of bed rest. 

Because of the important role of arterial and venous blood pressure in 

maintaining proper circulation, it is of particular interest to elucidate some 

of the aspects of vascular motor control and to determine the extent to which 

active and passive compensatory responses are invoked by changes in transmural 

pressure. A s  a single step toward this goal and in conjunction with our venous 

wave transmission studies we have investigated the effects of variations in 

transmural pressure on the propagation of waves in the vena cava. 

Experimental Methods 

Various techniques were used to change the venous pressure in order to 

determine its effect on the wave transmission characteristics of the vena cava. 
64 



Initially, it was felt that the infusion of a small amount of blood or normal saline 

from an elevated reservoir into a femoral vein would produce a substantial 

pressure increase in the vena cava. A few attempts with this proeedure,however, 

revealed that the circulatory system was able to accommodate a moderate 

infusion of fluid over a period of minutes and exhibit only a slight rise in venous 

pressure. By progressively increasing the diameter of the infusion cannula and 

the height of the reservoir above the femoral vein the venous pressure could be 

raised 300 to 400 mm H 0 in less than three minutes by infusing 2 liters of fluid. 

With the exception of venous pressure, the physiological and chemical changes 

caused by the massive addition of fluid to the circulatory system could not be 

assessed and thereby rendered this technique of little practical use for our 

purposes. 

2 

With the aid of a tilt table we were able to change the hydrostatic pressure 

in the vena cava rapidly and repeatedly thus eliminating two of the major draw- 

backs associated with infusion. The table has a tilt capability of from -15' to 

40' with respect to the horizonta1,and for the average anesthetized dog we could 

vary the transmural pressure at  the venous bifurcation from about 0 to 300 or 

400 mm H 0 in less than 10 seconds. The supine dog was restrained on the 

table with a harness which supported him at the axillae. To prevent the pressure 

transducers from accidentally moving relative to one another in the vena cava 

during the tilt maneuver, their catheters were tied together and the two 

manometers were inserted as a single unit. Agaiqhowever, we were faced with 

the problem of determining the extent to which additional physiological changes 

2 
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induced by tilting affect the wave transmission characteristics. For example, 

corresponding variations in the hydrostatic pressure in vessels other than the 

vena cava and their influence on the baroreceptors can be expected to alter the 

cardiac rate and output as well as the peripheral resistance and blood pressure. 

The method for varying venous pressure which eventually proved to be 

the most satisfactory for our purposes was occlusion of the vena cava. The 

pressure was increased by occluding the vessel below the heart with a balloon 

catheter inserted through the right external jugular vein and positioned in the 

inferior vena cava between the heart and the hepatic branches. By inflating 

the balloon for a period of usually less than 15 seconds the venous pressure 

would rise from its normal value of 50 to 100 mm H 0 to as much as 200 o r  

300 mm H 0. A s  evidenced from the relatively stable heart rate and blood 

pressure during short periods of caval occlusion this technique appeared to 

involve a minimum of interference with normal cardiovascular functions. 

2 

2 

Furthermore, it was possible to occlude the vessel repeatedly without observing 

any deleterious effects on the animal as manifested in the control (or pre- 

occlusion) values of arterial and venous pressures and the heart and respiration 

rates. 

Results 

Tilt 

More than 15 experiments were conducted in which a tilt table was used 

to vary the venous pressure. The artificial pressure waves were induced with 

either the spring-loaded syringe or pump and could not be considered small 
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since the signal amplitude usually exceeded several mm Hg. In general we 

found that pressure signals travel at a greater speed when superimposed on a 

higher transmural pressure. Figure 52 shows a typical example of the effects 

of tilting on the arterial and venous pressures and the speed of large pressure 

pulses in the abdominal vena cava. Arterial pressure was measured in the 

carotid artery and venous pressure in the abdominal vena cava at the bifurcation. 

Pressure signals were produced by the injection of 0.5 cm of warm saline into 

a femoral vein. Tilting the animal immediately produced an elevation in the 

venous pressure and a substantial increase in the speed of large amplitude pres- 

sure signals. While the animal was kept at  60' tilt for a period of 8 minutes 

the mean arterial pressure and the pulse pressure continuously decreased 

while the wave speed and venous pressure exhibited no major changes. Data 

obtained 4 minutes after returning the animal to its original position do not 

deviate substantially from the pre-tilt values. In addition we found that the 

amplitude of the pressure waves increased markedly as  the transmural pressure 

was raised. However, because of the length of time required to adjust the 

stroke or injection volume of the wave generator, it was not practical to main- 

tain control over the amplitude of the induced signals. In some cases during 

extended periods of tilt at a constant angle a gradual decrease in wave speed 

was observed even though the transmural pressure remained constant. 

Figure 53 provides an illustration of this behavior for the time period 18 to 35 

minutes in which the wave speed decreases about 25 percent. In this example, 

the waves were generated by the pump and the peak-to-peak amplitudes varied 

3 
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from about 2 mm Hg at 0' tilt to about 10 mm Hg at 60' tilt. This figure also 

illustrates the typical effect on the wave speed of one form of cardiac failure 

which was induced by prolonged tilting and manifested by an absence of arterial 

pulse pressure. Observe the dramatic increases in signal velocity immediately 

upon death followed by a gradual decrease to approximately the pre-death value 

over a period of about eight minutes. Of particular interest is the fact that no 

significant variations in venous pressure are  associated with these changes in 

wave speed. 

On some occasions, increases in transmural pressure above a certain 

value would cause the wave speed to decrease as depicted graphically in Figure 54. 

Here we have plotted as a function of tilt angle the systolic and diastolic arterial 

pressures, transmural venous pressure, heart rate and wave speed. Each point 

represents an average of 5 to 10 measurements and the dog was held at each 

position for 6 to 10 minutes and then raised to the next higher angle. A s  the 

animal is tilted from -15 to 40 the transmural pressure and wave speed both 

increase as expected while the arterial pressures drop slightly. When the tilt 

angle is increased to 60 and 80 ,increases in transmural pressure are 

accompanied by marked decreases in wave speed and arterial pressures, 

which may serve as an indication of some form of cardiovascular collapse. 

Occlusion 

0 0 

0 0 

Occlusion experiments provided extensive data regarding the relationship 

between venous pressure and the transmission characteristics of small amplitude 

sine waves of various frequencies. The vibrating piston was used to generate 
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the signals and their amplitudes were controlled such that they never exceeded 

2 mm Hg peak-to-peak for all values of transmural pressure. Typically, the 

phase velocity increased with increasing transmural pressure and a linear 

relationship between these two quantities was apparent for the range of fre- 

quencies and pressures considered. Results of a representative occlusion 

experiment are depicted in the graph in Figure 55 where we have plotted wave 

speed as a function of venous pressure for signals with a frequency of 35 Hz. 

In this example the speed increased from about 240 to 400 cm/sec as the pressure 

was raised from 60 to 155 mm H 0. Assuming a linear dependence of the wave 

speed on transmural pressure, the slope of this curve based on the method of 

least squares is 1 . 6  cm/sec/mm H 0. Figure 56 illustrates similar results 

for signals with frequencies of 30, 40 and 50 Hz. Although the complete data 

2 

2 

were collected over a period of about 8 minutes, the data corresponding to a 

single frequency were obtained in less than 20 seconds during a single occlusion 

of the vena cava. A linear regression line was calculated for the combined 

data and was found to have a slope of 2 . 1  cm/sec/mm H 0. Further results of 

these pressure studies are summarized in Table 11. Notice that the linear re- 

2 

gression coefficients calculated from the data ranged from about 1.5 to 2 . 5  cm/sec/ 

mm H 0 for all cases. 2 

Discussion 

The results of our experiments consistently show that variations in venous 

pressure strongly affect the tranmission characteristics of large and small 

pressure waves in the vena cava. The usual marked increase in the speed and 
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amplitude of induced waves with rising transmural pressure appears to be the 

result of substantial changes in the elastic and viscoelastic properties of the 

vessel wall. This behavior may also be interpreted as a decrease in the 

distensibility of the vessel which is defined mathematically by dV/dp, the 

ratio of the volume increment dV associated with the pressure perturbation dp. 

In light of the previously discussed nonlinear behavior of the vena cava with 

respect to the propagation of large amplitude pressure waves, the results of the 

tilt table experiments serve only as gross indicators of the effect of pressure 

on wave velocity since the amplitude of the signals was allowed to vary with 

transmural pressure. We were able to establish, however, that the artifically 

induced changes in distensibility depend to a great degree upon the severity and 

duration of the applied stimulus and, most importantly, appear to be mediated 

in part by some - as yet unknown - active mechanism. This active ability 

of the vessel to change its stiffness with changes in transmural pressure ap- 

parently can be expended and lead to some form of cardiovascular failure as 

illustrated in Figures 53 and 54. Additional support for this hypothesis was 

provided from experiments in which a dog was repeatedly tilted to 60 , held in 

that position for about 30 seconds and then returned to the horizontal. A 

constantly decreasing tolerance to this type of stress was evident from the 

progressive decrease in wave speed at 60 as well as at  the horizontal position 

during successive cycles. To gain a better understanding of this phenomenon, 

the effects of humoral and neural stimuli on the wave transmission characteristics 

of the abdominal vena cava are  currently being investigated. 

0 

0 
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When the venous pressure was increased by occluding the vessel, data 

for a single study could be collected in a period of a few seconds and before any 

compensatory response of the circulatory system, if present, was reflected 

in the arterial pressure and heart rate. In addition the amplitude of the waves 

was kept sufficiently small at all values of transmural pressure so that nonlinear 

effects were not noticeable. It should be noted that the observed increase in wave 

speed with pressure, normally about 2 cm/sec/mm H 0, does not agree with 

the theoretical analysis of Anliker and Maxwell8) which predicts increases of 

2 

no more than a few percent of those we have obtained experimentally. This 

discrepancy can be explained in terms of marked changes in the effective Young' s 

modulus of the vessel wall which are  not accounted for in the theory. 

The distensibility of a blood vessel is defined by its geometry as well as 

by the mechanical properties of its wall. Any evaluation of distensibility from 

the wave transmission characteristics of the vessel therefore requires that we 

determine all changes in vessel diameter associated with variations in wave 

speed. Attempts were made in our experiments to measure continuously the 

diameter of the vena cava as a function of transmural venous pressure. In one 

approach we monitored the electrical resistance of a mercury filled silastic 

tube which encircled the vena cava and could stretch and contract with the 

circumference of the vessel. We found however, that the force required to 

increase the length of the gauge was generally greater than that needed to 

constrict this highly distensible vessel. In other experiments we used a catheter- 

tip device developed by H. Pieper 41y 42) for measuring the internal diameter of 
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blood vessels and the heart. The transducer consists of a linear differential 

transformer contained in a tube of small diameter. Attached to the tube are 

three hinged braces or feet which are spring-loaded and expand within a vessel 

until they touch the wall. The braces are linked to a ferromagnetic sleeve which 

slides along the tube as the braces open and close and causes a change in the 

output of the differential transformer. We found however, that the vessel 

tended to distort into a triangular shaped cross section due to the expansion of 

the braces, and efforts to eliminate this difficulty by using weaker springs re- 

sulted in the desired decrease in vessel distortion, but also in an inability of the 

transducer to accurately track all but the quasistatic motions of the vessel wall. 

In addition,the vena cava was subjected to varying degrees of contact with the 

Pieper gauge and this stimulus could be expected to alter in some way the wave 

transmission characteristics of the vessel. 

Visually we were able to observe a definite increase in the vessel diameter 

with increasing venous pressure. This change in diameter was measured with 

calipers but never exceeded more than about 10 percent even when the transmural 

pressure was increased by four of five times its normal value. 

Without additional information regarding the nature and function of active 

control mechanisms in the circulatory system, in particular their time constants, 

it is not possible to attribute the observed changes in wave speed directly to 

variations only in transmural pressure. It is clear from these results that the 

role of transmural pressure in determining the transmission characteristics of 

a blood vessel over both long and short periods of time must be considered in a 
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proper interpretation of wave propagation data. 

The wave transmission approach presented here will be useful in the 

continued study of the distensibility of parts of the vascular capacitance system 

and its regulation. The suggested use of transcutaneous ultrasound sensors 

should prove valuable in the determination of the relative significance of dif- 

ferent components of the reservoir system and in the evaluation of the range of 

variation in the distensibility of blood vessels in different individuals under 

normal and pathologic conditions as well as in states of stress. 
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TABLE I 

EFFECT O F  RESPIRATION ON THE SPEED OF PRESSURE PULSES 
IN THE ABDOMINAL VENA CAVA INDUCED BY THE 

INJECTION OF 0.5 CM3 SALINE WITH A SPRING-LOADED SYRINGE 

V 
P Velocity, cm/sec v - v  in r 

Experiment mmH 2 0 cm n Inhale Resting cm/sec 

36 150 4.4 6 593 490 103 

37 

47 

63 

67 

68 

73 

93 

123 

132 

75 

120 

140 

90 

90 

60 

50 

- 
12 0 

9.4 4 582 

5.8 6 591 

3.6 7 626 

4.9 10 43 7 

4.5 13 495 

4.4 4 77 6 

5.1 3 637 

6. 0 5 57 5 

6.0 2 533 

45 9 

3 83 

547 

385 

349 

739 

564 

480 

42 5 

123 

208 

79 

52 

146 

37 

73 

95 

108 

P transmural pressure 

Ax distance between transducers 

n 

V 

number of wave speed measurements during inhalation and 
corresponding resting phase 

wave speed at inhalation 

wave speed during resting phase 
'in 
V r 
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TABLE I1 

EFFECTS OF TRANSMURAL PRESSURE* ON THE SPEED 
O F  SMALL AMPLITUDE SINE WAVES IN THE ABDOMINAL VENA CAVA 

P *,mmH20 Ax Freq. v Velocity, cm/sec - AV cm/sec 
Experiment cm Hz Initial Max. Initial Max. aPv mmH20 

294 4.0 30 

4.0 30 

4.0 50 

4.0 40 

3.0 50 

3.0 50 

298 4.0 35 

3 19 3.0 40 

3.0 55 

60 2 00 

60 235 

65 235 

60 235 

70 240 

60 210 

60 155 

45 195 

97 2 15 

230 5 00 

2 13 5 97 

265 635 

234 6 15 

256 6 12 

236 638 

239 406 

2 00 643 

2 73 486 

1.59 

1.75 

2.13 

1.85 

1.97 

2.34 

1.62 

2.43 

1.69 

* The transmural pressure was increased by occluding the vena cava for 
15 to 30 seconds with a balloon catheter positioned near the diaphragm. 

change in transmural pressure 

change in wave speed associated with pressure variation AP 
V 

AP 

AV 

AV 
V 

- Ap linear regression coefficient 
V 
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Figure 1. Dispersion curves for type I waves with s = 0 and 1 
for different values of mean flow velocity. 
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Figure 2. Mode shapes of type I waves with s = 0 for 
different values of mean flow velocity. 
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Figure 3. Mode shapes of type I waves with s = 1 for 
different values of mean flow velocity. 
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Figure 4. Effect of mean flow on the dispersion of type I 
waves with s = 2 and 3. 
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Figure 5. Effect of mean flow on the mode shapes of type I 
waves with s = 2. 
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Figure 6. Effect of mean flow on the mode shapes of type I 
waves with s = 3. 
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Figure  17. Effect of y on dispers ion of type I11 waves with s = 2. 
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Figure 25. Dispersion of type III , s = 2 waves for <2 = 0.4  and various v 
;Yo 

104 



U 

Ln 
0 

0 

LLI3013A 3swa SS3?NOISN3mIa ' 2 

105 



0 . 
r-4 

I I  

2m 

0 . 
r-4 

co 
0 

0 

9 w 
0 0 

. N 

0 

rn 
0 

0 

0 

0 
0 0 0 0  

0 0 0 .  

0 0 4 4  

H 
H 

0 

6U30?3R 3SVHd SS39NOISN3KIa ' N 3 

106 



0 
0 0 . o o m  

0 * O s . .  
0 0 d d d 0  

H 
H 

0 

N 
. 0 

4 

XLI3013A BSVHd SS31NOISN33VICI 3 
N 

0 

107 



N 

d 
9 

d 
0 . 
4 

9 

d 

N 

0 
I I  

w 
H 

zm 

Z N  
3.r I' 
F m  

9 

d 
N 

d 

d 
0 

0 0 * o o m  
d 0" S l L - i G  

N 

0 

0 

4 

m 
d 

0 

3 

108 



4.0 

w 
4 

TYPE 
s = 2  

I11 

0 I I I 1 I 1 
0 1.0 2.0 3 . 0  4.0 5 . 0  

N 

o , DIMENSIONLESS FREQUENCY 

Figure 30. Effect of on dispersion of type III waves with s = 2. 
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Figure 31. Schaevitz-Bytrex pressure transducer model HFD-5. 
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PISTON 

Figure 36. Electrically driven piston with tone burst generator and oscillator. 
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f (t) 

Figure 38. Fourier transform of finite trains of sine waves. 
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Figure 39. General experimental arrangement for studying the transmission 
characteristics of artificially induced pressure waves in the 
abdominal vena cava of anesthetized dogs. 
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EXPERIMENT 209 FEBRUARY 2, 1968 
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Figure 43. Changes in wave shape due to increasing signal amplitude. 
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Figure 44. The effect of a large signal amplitude on the speed of the peaks and 
valleys of near sinusoidal pressure waves produced by the pump. 
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Figure 49. Variation in the speed of small pressure waves with frequency and 
transducer location. 
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Figure 51. Attenuation curve corresponding to the dispersion data given in 
Figure 48. 
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Figure 52. Typical example of the effects of tilting on the arterial and venous 
pressures and the speed of large amplitude pressure waves in the 
abdominal vena cava. 

13 1 



EXPERIMENT 141 

I I I I I I 

JUNE 30,  1967 

160 

ARTERIAL 11: ! 
PRESSURE DEATH 

m m  Hg 

40 

0 

40 0 

40 O 

20° 
40 O 

0' 

t i l t  

VENOUS 
PRESSURE 200 

m m H  0 2 

0 

500 

400 F 1 
300 t PJ 

WAVE SPEED 

2oo ~ J L 
c m / s e c  

100 

'1 

Figure  5 3 .  Effects of long duration t i l t  on a r t e r i a l  blood p res su re  and wave 
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